�tc "<>"�

CHAPTER�tc "<>CHAPTER"�

 �tc "<> "�9�tc "<> 9"�

Reuse�tc "<>Reuse"�

EDITOR’S NOTE: Graphics quality will improve when printed.

CHAPTER OVERVIEW �tc "<Head 3 (14)>CHAPTER OVERVIEW "�

	Better methods, advanced development tools, speedier hardware, more disciplined engineering, and improved management techniques cannot fulfill their promises, if we continuously build individual variations of the same basic software functions. For progress in software to occur, reuse must occur. Reuse is a proven, effective way to increase productivity and reliability. Reuse occurs when software assets from prior programs are used again, or once built, the same assets are used more than once during the on-going development process. In most cases, reuse reduces the time and cost of developing new software — and the number of defects. Reuse is not limited to code alone. Opportunities for reuse abound with architectures, specifications, designs, test cases, documentation, and any other artifact you produce, or find in a reuse repository.

	Integrating software reuse into the software engineering process is a chance for dramatic improvement in the way software-intensive systems are developed and maintained throughout their life. [VISION92] There are definite, quantifiable cost and time savings advantages to employing reuse. In this chapter you will learn that by implementing reuse at the beginning of the life cycle, the following benefits can be achieved:

•	Improved quality and reliability,

•	Quickly prototyped requirements through the use of existing components,

•	Technical risks identified and managed early,

•	Enhanced systems interoperability,

•	Accelerated system development, and

•	Reduced software acquisition costs.

��tc "<>"�

CHAPTER�tc "<>CHAPTER"�

 �tc "<> "�9�tc "<> 9"�

Reuse�tc "<>Reuse"�

INCREASED QUALITY THROUGH REUSE�tc "<Head 2 (14)>INCREASED QUALITY THROUGH REUSE"�

Obviously, the highest type of efficiency is that which can utilize existing material to the best advantage. — Jawaharlal Nehru [NEHRU58]

The concept of reusing parts, components, and even major subsystems (common in the design and production of hardware systems) has been around a long time. Reuse saves time and resources and reduces the risk of building in defects. Effective reuse of knowledge, processes, and products from previous software developments has the potential for increasing DoD software productivity and quality an order of magnitude. In addition, the use of reusable software assets is a criterion for a development organization’s progression to higher maturity levels. [CALDIERA91]

Software reuse is a process by which software assets (or components) are used in more than one application. Reuse can occur within a system (e.g., �xe "F-16 Fighting Falcon"�F-16A to F-16B), across similar systems (�xe "C-141 Starlifter"�C-141 to �xe "C-17 Globemaster"�C-17), or in widely different systems (�xe "AH-64 Apache"�AH-64 Apache to �xe "F-22 Advanced Tactical Fighter"�F-22). [CARDS922] Software assets include source and object code, design documents, specifications, requirements, test cases, test code, test support data, users’ manuals, programmer notes, algorithms, plans, and metrics — to name a few. The reuse of a software asset also implies the concurrent reuse of those items associated with it.

Software must be designed to make maximum use of existing software and software products should be developed for subsequent reuse to the maximum extent possible. This means that you must identify and exploit software reuse opportunities, both Government and commercial, before beginning any new software development. Therefore, you should base your reuse strategy on a determination of whether your software falls into one of the following categories.

•	A unique development. A software asset is developed for a singular, unique purpose (i.e., no reuse).

•	Developed to be reusable. A reusable software asset is developed to satisfy a particular need and can be reused for other than its original purpose and intent.

•	Reusing existing assets. Existing assets are used as is, as COTS, GOTS, or NDI.

•	Any combination of the above.

�REUSE PROCESS�tc "<Head 2 (14)>REUSE PROCESS"�

Four primary activities occur in the reuse process: domain engineering, architecture development, applications engineering, and reusable asset management. As illustrated in Figure 9-1, �xe "Domain engineering"�domain engineering identifies and develops a product-line architecture (occurring during the domain engineering phase) and develops and/or certifies reusable assets (e.g., requirements, design, code) within the domain architecture. �xe "Domain engineering:Applications engineering"��xe "Application:Engineering"�Application engineering uses the assets from the domain engineering phase for developing new applications within the domain. Application engineering also identifies assets for reuse after they have been used and modified for new applications. These are then transferred into the domain engineering mode. Domain engineering can be categorized as “�xe "Reuse:Engineering for"�engineering for reuse” as it represents the supply side of reuse, where application engineering is the demand side. These two processes are linked by the reusable asset management process that serves as the middleman (or supplier) of reuse. This includes one or more repository, tools, and procedures required to manage reusable assets. [BLUE92] Figure 9-2 illustrates how these activities are iterative within the reuse process.

�

Figure 9-1 Domain-specific, Architecture-based Software Engineering to Maximize Reuse

�

Figure 9-2	Reusable Asset Production through Iterative Domain and Application Engineering

NOTE:	See Chapter 2, DoD Software Acquisition Environment, for a discussion on open systems, standards-based architecture. See Chapter 4, Engineering Software-Intensive Systems, for a detailed discussion of domain and applications engineering. See Chapter 14, Managing Software Development, for a discussion on architectural design.

Reuse Management Systems (Repositories)�tc "<Head 3 (14)>Reuse Management Systems (Repositories)"�

The purpose of a reuse management system is to evaluate, accept, maintain, and make reusable assets available for use (reuse) on individual software developments. As the primary support tool for software reuse, the repository supplies reusable software assets, similar to a retail outlet store — thus it is a software reuse facilitator. The items for consumption can be based on vertical domains, horizontal domains, the types of components it contains, and the software language used. Merchandise can include software assets (e.g., code, specifications, designs, and documentation), software tools, or just a catalog of asset descriptions and sources. The retail store/repository analogy can be carried one step further.

•	Store floor and shelf space = capacity,

•	Boxed, wrapped merchandise and content descriptions = packaging,

•	Store entrance and special sale notices = access,

•	Walking the aisles and comparative shopping = browsing and selection,

•	Check out counter and merchandise bagging = extraction, and

•	Unit pricing and self-service shopping = cost incentive.

Implementing Reuse�tc "<Head 2 (14)>Implementing Reuse"�

Most people have spent their lives reinventing the wheel, then refusing to concede that it’s out of round. [LENARD92]

Since software’s inception, practitioners have been reusing algorithms, subroutines, and other chunks of code. They have also reverse-engineered legacy systems [discussed in Chapter 11, Software Support] for future reuse. This has been performed informally and usually in an ad hoc manner as circumstances allow. This type of reuse is referred to as opportunistic. The issue with reuse is not that it is not practiced. The problem has been that we have lacked an organized, systematic, conceptual framework and strategy for reuse.

DoD established high-level goals and objectives for software reuse with the DoD Software Reuse Initiative (SRI) Vision and Strategy. These goals were endorsed by Congress in 1994 with direction to form the �xe "Reuse:DoD Software Reuse Initiative Program"�DoD Software Reuse Initiative Program. The Air Force has been supporting reuse efforts since 1991 and published the first version of their Software Reuse Implementation Plan in 1992. The plan has been used by various Air Force organizations to plan their reuse strategies. Since the initial plan was written, DoD and industry have significantly adjusted the focus of reuse strategies. It is, therefore, your responsibility to insert reuse technology into your software development and acquisition processes. This includes creating and using reusable assets, and working with the appropriate domain-specific reuse repository to exploit the benefits of their reusable assets.

The key to implementing architecture-based reuse is the selection of a �xe "Reuse:Reuse Project Officer (RPO)"�Reuse Project Officer (RPO) who is an experienced software engineer that can understand abstract domain concepts and communicate with functional experts. The RPO’s responsibility is to develop and exercise the software �xe "Reuse:Implementation Plan"�Reuse Implementation Plan. The plan should define the objectives, tasks, roles, and metrics to evaluate its progress. Reuse activities can be categorized as asset creation, asset management, or asset utilization. The reuse plan should organize reuse objectives around these activities. The plan must also address how to improve the reuse process and products through metrics and data collection to measure reuse success.

During the requirements phase, a thorough search should be made of all Ada repositories for candidate modules/packages for inclusion in your system. To fully reuse software, a one-to-one correspondence is needed between specifications, requirements, design, code, and test procedures. With this correspondence, not only can code be selected from a repository, but its associated documentation can also be reused. This correspondence is also helpful to the user. It defines what the software does and helps determine whether its design is compatible with its proposed use. The reuse capabilities of newly developed Ada code, in conjunction with the repositories, provide an opportunity for considerable savings in both time and money.

A systematic reuse strategy defines a software production process that takes advantage of previous developments and focuses on enhancing a product-line, rather than on creating a new product. Borrowed from the hardware manufacturing industry, a product-line approach provides a better way to manage development costs. In the hardware factory example, fixed factory costs (infrastructure, e.g., facilities, tools, equipment, training, research) are separated from variable product costs (raw materials, labor, utilities), as illustrated on Figure 9-3. Increased capital investment in the factory yields increased productivity — resulting in reduced cost per product. In the software factory, the same benefits can be realized by investing in the establishment of product-lines. Fixed software factory costs (infrastructure, e.g., SEE, domain engineering and management, process engineering, architecture, training, metrics) are separated from variable product costs (COTS licenses, applications engineering, integration, test/certification, configuration management). An investment in upfront fixed costs yields increased productivity — resulting in reduced cost per software product.

�

Figure 9-3 Factory Fixed and Variable Costs

Product-Line Approach�tc "<Head 3 (14)>Product-Line Approach"�

A product-line is a suite of products that share common functional attributes (technology, design, parts, application processes, production methods). It is organized to realize economies of scope, but may consist of varying specific features and functionality required by different groups of customers. Once a product-line is created, engineering efforts concentrate on defining the requirements for a particular version of the product and on how those requirements vary from the original product. The new product is built using the existing architecture, open systems standards, and object technology — all saving time during the design phase. Also, because the new version consists of pre-developed software artifacts, development time and testing are reduced. Any new artifacts, as well as any enhanced pre-developed ones, are placed in a reuse repository for future product versions. Through iterative reuse and development, the product-line constantly evolves into a higher quality, more advanced product.

One example of a product-line is that created by a telephone manufacturer. Their product-line may be organized into cordless hand-held, cellular/mobile, traditional, and multi-user/multi-lined networked telephones. Although their features and functionalities may differ, all telephone products share common technology, parts, and manufacturing processes. Examples of commercial software product-lines include: Hewlett-Packard software for laser-jet printers; versions of Lotus Development Corporation’s 1-2-3 spreadsheet; Boeing Aircraft Company’s commercial jet aircraft line; virtually all major automobile manufacturing; Intel Corporation’s microprocessor line; and most commercial software packages. DoD also has a large number of potential software product-lines it acquires mostly through contractors. These systems (products) are categorized into domains and product-lines within those domains. Examples of DoD product-lines include avionics systems, radar systems, communication satellites, trainers and simulators, command and control systems, medical information systems, missile guidance systems, and personnel management and financial systems.

Product-Line Benefits�tc "<Head 4 (12)>Product-Line Benefits"�

The transition to a DoD product-line architecture for the development and acquisition of software-intensive systems has the potential for significant benefits — shorter time to field, lower costs, greater interoperability, and improved quality. In fact, cost and schedule savings of as much as 65% have been reported. The architecture-based product-line approach institutionalizes the following software best practices:

·	Open systems,

·	Ada,

·	Software development maturity,

·	Business process improvement,

·	Reuse,

·	CASE tool use, and

·	Metrics.

The benefits of a product-line approach include the following.

·	Risk is reduced by reusing proven components and through development consistency;

·	The amount of new development is reduced, while the number of products produced increases;

·	The grouping of features can be maximized to increase the appeal of more customers;

·	Time-to-market is decreased through reuse of technology, design, and components;

·	Changes focus on lower-level software issues;

·	Requirements growth and changes are addressed during the development process;

·	Maintenance is easier and less costly;

·	Rework is decreased through greater user/developer team focus;

·	Recurring costs are converted to nonrecurring costs;

·	Cost of ownership is reduced;

·	User/developer productivity is improved;

·	Economies of scale are achievable through domain models, reusable components, and common SEE and mission environments;

·	Stovepiped people problems are reduced:

-	Training is simplified (i.e., a lesson-learned is a lesson-shared),

-	“Crunch-time” staffing is decreased; and

·	Smaller teams are required which reduces the lines of communications and resource expenditures.

An example of these benefits is the Navy STARS program. Early findings show productivity results for all programs are at $162/LOC. Subsequent development efforts within the domain have improved to $81/LOC. With the current build 85% of the requirements have been met and productivity improvements have reduced the cost to $65/LOC. Similar benefits have been documented for quality and cycle-time. [NOTE: See the Air Force STARS SCAI discussion below.]

Product-Line Paradigm Shift�tc "<Head 4 (12)>Product-Line Paradigm Shift"�

For major DoD software-intensive systems with a common set of requirements, an architecture-based, product-line acquisition has great potential — but there must be a considerable paradigm shift for both the Government and its contractors. Reuse-based software development requires that both parties look beyond today’s contract toward future acquisitions and mission needs. This new perspective demands a strategic vision wherein today’s development serves as a baseline for reducing cost and schedule on future acquisitions. A strategic product-line plan must transcend acquisitions — rather than just focus on the current requirement. [CHRISTENSEN94] However, the software community alone cannot develop architecture-based product-lines. This paradigm shift will require upfront capital investment for the development and maintenance of the architecture, and for developing and certifying reusable components. Not only software developers, but comptroller, program evaluation and analysis, and acquisition organization executives must understand and commit to the creation of product-lines.

OPPORTUNITIES FOR REUSE�tc "<Head 2 (14)>OPPORTUNITIES FOR REUSE"�

The opportunities for reuse are vast and not limited to code alone. Any and all software artifacts you produce or find in a reuse repository that meet your program-specific needs has the potential for cost-saving reuse implementation. These artifacts can include architectures, data, specifications, designs, test cases, modules, subsystem components, COTS, interfaces, or documentation, algorithms — to name a few.

Reuse for Embedded Weapon Systems�tc "<Head 3 (14)>Reuse for Embedded Weapon Systems"�

Embedded weapon systems often have such unique requirements that they are one of a kind developments. In these cases, software reuse is more tactical than strategic and often internal to the program. Embedded weapon systems have the following characteristics:

·	Complex, real-time applications,

·	Unprecedented requirements and technology,

·	Highly integrated systems,

·	Application-specific hardware and architecture (e.g., radar signal processors, flight control systems),

·	Concurrent and integrated hardware and software subsystem development,

·	Extensive development, integration, and combined hardware/software test efforts,

·	Long time spans from the development of one system to its successor,

·	Integration of COTS, government-off-the-shelf (GOTS), and concurrently developed subsystems (e.g., armament and avionics systems).

Even with these characteristics, software reuse can offer benefits through the implementation of existing domain-specific software artifacts. Tactical reuse is opportunistic and can provide a way to minimize new development. Also, for embedded systems, functional reuse at the system and subsystem level may have higher pay back than a software-level approach. Typically they are required to meet strict real-time, safety-critical processing and interface requirements integrally related to the system’s hardware. However, often there are many common modules, such as data retrieval or display routines, that can be used by all team members. Such vertical reuse can substantially reduce costs and shorten schedule. In fact, with the use of a mature Ada software engineering environment (SEE) you might achieve reuse of 20 to 30% within your present program.

The example of an aircraft flight control management system illustrates why embedded software reuse is sometimes limited. This subsystem translates pilot control inputs into aircraft control surface movements while factoring in aircraft attitude, speed, angle-of-attack, center-of-gravity, and control laws that prevent over-stressed conditions or loss of control by limiting the pilot’s authority. It performs these functions through a management system that monitors numerous redundant aircraft-specific sensors and control features with finite dynamic ranges, sensitivities, noise reduction methods, and critical timing requirements. Adapting an existing flight control system for reuse in another aircraft involves significant effort in terms of understanding and modifying requirements, design, and testing to account for differences the new system’s functional requirements, hardware, and architecture.

To compound the problem, major new developments or upgrades of one weapon system to another similar one are often decades apart. The time from the development of the �xe "B-52 Stratofortress"�B-52 to the �xe "B-1B Lancer"�B-1, and from the B-1 to the �xe "B-2 Bomber"�B-2, is measured in decades. The same is true for the time span from the �xe "F-15 Strike Eagle"�F-15/�xe "F-16 Fighting Falcon"�F-16 to the �xe "F-117 Stealth Fighter"�F-117, and again to the �xe "F-22 Advanced Tactical Fighter"�F-22. During these times, the advancement of hardware, software, and weapon system-unique architecture technology, as well as greater user expectations, work against the probability of successfully reusing software from a predecessor system. Aside from these obstacles, there are various approaches for achieving embedded system reuse.

·	Existing subsystem-level reuse. When appropriate, existing subsystems are used as-is or modified to satisfy new or modified system requirements. This decision must be based on a series of engineering trade studies where each alternative’s cost/benefits (including operational requirements) are identified and quantified, resulting in a recommended approach.

·	Develop for subsystem-level reuse. Common subsystems are developed once and then reused on multiple platforms by meeting common interface requirements. The Standard Flight Data Recorder is an example of this approach which was designed to perform essentially the same function for all aircraft. [This illustrates why it is much more effective to reuse the entire subsystem (e.g., hardware, software, interfaces) than simply just the software.]

·	Intra-program software-level reuse. Used on the F-22 program, this involves software-level reuse within an embedded weapon system development program and across the program team. Contractor teams use standard software engineering processes, as well as a common toolset. This includes identifying common requirements and developing common software components which are then available to all team members. This places the responsibility for reuse on the contractors, not on the Government.

·	Inter-program software-level reuse. This type software-level reuse (addressed by the 1992 �xe "Reuse:Air Force Software Reuse Implementation Plan (1992"�Air Force Software Reuse Implementation Plan) involves reusing software components from one software system in another. The cost/benefits of this approach should be assessed through trade studies conducted by individuals knowledgeable about both systems. To make an educated assessment one must understand the existing system, its environment, and limitations, as well as the new system’s requirements. With a clear view of both systems, a realistic evaluation of potential cost/benefits in reusing existing software artifacts can be made.

·	Architecture reuse. This involves the reuse of software structures. For instance, structural modeling provides opportunities for software reuse across and within families of flight simulators. Structural models, comprised of multiple instances of a small number of structural elements, are characterized by multiple instances, or “ensembles,” of those elements. Complex interactions emerge from simple interaction patterns among these small number of elements. Structural modeling has been successfully employed on the B-2 and �xe "C-17 Globemaster"�C-17 training simulators, and has subsequently been transitioned to several other Air Force, Navy, and NASA programs.

·	SEE/toolset reuse. This application domain offers the opportunity to exploit COTS and reuse. For example, the F-22 program is reusing a common system/SEE (S/SEE) across all major prime and subsystem software contractors. Advanced development tools generate code for multiple, standard processing platforms and consistent application interfaces which help simplify software-level reuse.

��tc "<Head 3 (14)>"�

Specification Reuse�tc "<Head 3 (14)>Specification Reuse"�

An efficient method for improving the specification process is through reuse. Specification reuse can completely eliminate the effort involved in designing, coding, and testing the implementation of a specification. Specification-level reuse includes, for example, specification models, data flow diagrams, state-transition diagrams, and structured English process specifications. [YOURDON92] You should make sure your developer is aware of, and browses, the DoD and Air Force reuse repositories for specifications that might be used as a starting point for your program.

Architecture Reuse�tc "<Head 3 (14)>Architecture Reuse"�

Architecture reusability is based on the premise that there is a commonality among the architectures of similar type software systems. For instance, a commonality exists for all C2 systems and another core commonality exits for logistics systems. These commonalties are represented in �xe "Architecture:Generic"�generic software architectures that guide the design of systems within the domain. Commonalties must be factored out and dealt with in the broadest context possible. As the software architecture implements solutions to the �xe "Domain:Problem"�problem domain, it becomes a model for constructing applications and mapping requirements from the �xe "Domain engineering:Model"��xe "Models:Domain"��xe "Domain:Model"�domain model to reusable components. A generic architecture provides a high-level generic design for a family of related applications, as well as a set of components that can be reused for any instance of that application. A generic design also eliminates the need to develop a high-level design for each application within the domain. Domain developers use these generic representations as specifications for reusable components. [PAYTON92]

Design Reuse�tc "<Head 3 (14)>Design Reuse"�

When one thinks of reuse, it is usually in the context of reusable code. The problem with concentrating only on code is that code is produced after the most difficult phase of software development has been performed — requirements analysis and design. �xe "Cost:Of coding"��xe "Code:Cost of"�Coding should only consume about 10% to 15% of total software development time and effort, so increasing coding productivity and quality (through reuse or HOLs) can only achieve limited productivity increases. Good designers usually use design analogies from past problem solutions, and often have a repertoire of past successful design solutions upon which to draw. This is why the �xe "People:Skills/talent"�skills, experience, and resources of your developer with programs of similar size, complexity, and problem domain are crucial to this process. Hence, the first version of the model that goes through the simulation process is usually not a raw, untried, new model, but a viable candidate borrowed from a past solution. Reuse of designs at the developer level is a very common and efficient practice. [GLASS92]

NOTE:	Identifying the skills, experience, and resources needed from your developer can be a difficult value judgment. The �xe "People:Skills/talent:Skills Matrix"��xe "Skills Matrix"�Skills Matrix [discussed in Chapter 13, Contracting for Success] is a useful method for assessing whether contractor personnel qualifications will give you the depth of experience and breadth of domain knowledge your development requires. A developer with extensive experience in your domain is essential to success!

While code reuse typically occurs only at lower-level system design hierarchies, design reuse often results in whole branches of the hierarchy being reused. The darkened circles on Figure 9-4 represent modules with either design or code reuse.

�

Figure 9-4 Design �xe "Reuse"�Reuse Compared to Code Reuse [YOURDON92]

Code Reuse�tc "<Head 3 (14)>Code Reuse"�

When �xe "Reuse:Design"�developing code for reuse, special attention must be given to the parameters and structure of the software units to be reused to isolate specific hardware and system dependencies. Ada packages help in this area, but the code must be designed carefully so that the reusable unit is as generically applicable as possible. As the units of reusable code increase and become more generic, you will need more automated tools to keep track of reusable pieces. In some cases, the automated tools to build reusable systems are as complicated (or more so) than the systems they produce.

There are three general types of code reuse: (1) cut-and-paste of source code; (2) using the mechanism contained in most HOLs for �xe "Copying"�copying or including source code text from a library; and (3) �xe "Binary link"�binary links where already compiled external subroutines, procedures, or functions are contained in a library. Binary links can be incorporated into the application by invoking them through a linking mechanism after the main application has been compiled. The advantage of this third form of code reuse is that only one physical copy of the reused component is needed, regardless of the number of times it is invoked. Ada features and the structure of Ada code greatly increase the potential for code reuse. [YOURDON92]

NOTE:	Binary links to routines in a library are the only option that will ultimately reduce the software maintenance burden by minimizing the overall volume of software maintained by DoD. The other two options may reduce development costs, but multiple copies of reusable code require the same maintenance costs as new code because the overall volume of the software has increased. A reuse goal should be to take advantage of maintaining a single source component and using multiple executions.

Ada Reuse�tc "<Head 4 (12)>Ada Reuse"�

In addition to Ada’s ability to enable software engineering goals through design features that support software engineering principles, Ada design features also facilitate the economic benefits of reuse. [See Chapter 5, Ada: The Enabling Technology, for a discussion on Ada features.] By exploiting Ada’s reuse features, significant gains in software productivity and quality can be achieved.

The �xe "Information hiding"�information hiding found in well-designed Ada packages has a positive impact on reuse by containing few input parameters. The less you need to know about the environment external to the package component, the more likely the package can be reused. A common example is the abstraction, or hiding, of device-dependent logic by other portions of the Ada program. These other portions can be easily reused by different devices. Also, Ada software can be reused at other than the component level. That is, entire Ada programs or collections of Ada programs can be reused. Reuse of entire programs simplifies many reuse issues. Configuration control is streamlined because all users receive the same software version. In addition, production planning can be simplified through a periodic release cycle.

�tc "<Head 3 (14)>"�

Data Reuse�tc "<Head 3 (14)>Data Reuse"�

With greater reliance on �xe "Tools:Computer-aided software engineering (CASE):repository"�CASE technology, a CASE repository provides an excellent opportunity for data reuse. Not only are data declarations reusable, but so are all types of data definitions (such as data flow diagrams, entity-relationship diagrams, physical database designs, and structure charts). Code and parameter definition reuse are the most common form of reuse facilitated by a CASE repository.

COST/BENEFITS OF REUSE�tc "<Head 2 (14)>COST/BENEFITS OF REUSE"�

As you learned in Chapter 8, Measurement and Metrics, a significant variable affecting the cost of software is the number of source lines-of-code (SLOC) developed. The impact of this factor is straightforward — the greater the size of the system, the more expensive it is to build. Reducing the number of SLOC is an area ripe for process improvement. The easiest way to reduce the number of SLOC developed is through reuse. With reuse, the cost not only goes down, but quality and productivity go up. Gains in productivity, however, are never on a one-to-one ratio with reused resources. An organization achieving 80% reusability is not necessarily four times more productive than one achieving 20% reusability. Productivity savings will be somewhat offset by the dollar investment in the product-line infrastructure which reuse requires.

Cost of Reuse�tc "<Head 3 (14)>Cost of Reuse"�

A discussion on the cost of reuse naturally migrates to the �xe "Quality:Cost of"��xe "Cost:Of quality"�cost-of-quality. More testing and quality assurance is required because the consequences of a latent defect become increasingly more serious with reusable assets. On the other hand, heavily reused software assets have, by definition, higher quality than custom assets because defects get shaken out quicker and more thoroughly. Remember, quality does not cost — it pays! If you build a system using a large percent of reusable assets, you will be building a system that merits the “People’s Choice Award!” [YOURDON92] Reuse cost considerations include:

•	The investment in creating reusable assets must be amortized over the number of new systems or programs which can make use of those assets. Obviously, the more assets that get reused, the less burdensome is the investment.

•	Reuse requires that higher levels of testing and quality assurance than normally performed for custom software components. These higher levels are warranted by higher levels of usage. (On an average, 2 to 4 times more testing is required for reusable components.)

The assumption that building for reuse is expensive often comes from organizations with immature software development capabilities. Most methods for increasing reusability (i.e., modularity, high cohesion, low coupling, use of standards) are good software engineering practices routinely used by mature organizations. This is not to imply there are no additional costs associated with reuse. Although there is increased support through the reuse programs and repositories [discussed below], the cost to implement and maintain a database and retrieval system for internal reuse on a major software development can be substantial. Also, domain engineering, a relatively new discipline, requires training and manpower. Overly enthusiastic estimates of cost savings for reuse-based development and underestimating reuse implementation costs are common. A list of reuse costs should include:

·	Domain analysis and modeling,

·	Domain architecture development,

·	Inspection and quality assurance of reusable components,

·	Increased documentation to facilitate reuse,

·	Maintenance and enhancement of reusable assets, and

·	Training of personnel in design and coding for reuse. [CHRISTENSEN94]

NOTE:	See “Reuse at Hewlett Packard” below for a discussion on the cost of reuse.

There is one form of reuse that is almost free — reuse within your program. Experience shows that in a well-managed software development, using Ada and an associated robust software engineering environment [e.g., Rational/Apex Environment™ (discussed in Chapter 10, Software Tools)], reuse of up to 35% can be achieved. Be sure that your software development team has the vision and tools to obtain maximum reuse leverage from the software modules they themselves develop.

Benefits of Reuse�tc "<Head 3 (14)>Benefits of Reuse"�

The benefits of reuse can be substantial. For a specific acquisition, the dollar savings can be calculated by estimating the cost for development without reuse and subtracting the cost for development by reusing existing software assets. While this calculation may not be that precise, it provides a reasonably accurate estimate that indicates an order of magnitude potential savings. Because reusable software quality is generally known and substantially higher than newly developed software, a degree of confidence can be achieved through familiarity with a known entity. Reuse benefits includes:

·	Increased productivity,

·	Shorter development schedule,

·	Reduced costs over time,

·	Increased quality and reliability,

·	Earlier requirements verification,

·	Lower risk through more accurate size estimates,

·	Higher ability to leverage expertise in individual domains, and

·	Shorter time to field.

The greatest savings in reuse are achieved through systematic, strategic reuse-based development. In 1992 the �xe "Advanced Research Projects Agency (ARPA)"�Advanced Research Projects Agency (ARPA), projected software costs and savings to the year 2012. As illustrated on Figure 9-5, the savings anticipated in reuse-based software development will equals the combined savings of process improvement and software development tools.

�

Figure 9-5	Annual Projected DoD Software Cost (dollars in billions) [CHRISTENSEN94]

The �xe "Software Engineering Laboratory (SEL)"�Software Engineering Laboratory (SEL) (run jointly by NASA, Computer Sciences Corporation, and the University of Maryland) tracks aerospace software programs and maintains a database of program statistics. As illustrated in Figure 9-6, the study of 887 �xe "Language, programming:Higher order (HOL):Formula Translation (Fortran)"�Fortran programs showed that 98% of reused modules were defect-free compared to only 44% of new modules. In addition, this study (and others conducted by the SEL) indicates that code reuse requires only 20% of the cost required for new code. [FISHER91] [Subsequent studies have shown even greater benefits than the above when Ada is used compared to Fortran programs.]

�

Figure 9-6	SEL Comparisons of Defect Rates and Development Cost of New and Reused Modules

Reuse at the Standard Systems Center (SSC)�tc "<Head 3 (14)>Reuse at the Standard Systems Center (SSC)"�

As discussed in Chapter 7, Software Development Maturity, a study report was published in 1993 about the software engineering process at the Standard Systems Center, Maxwell AFB-Gunter Annex, Alabama. One of the study’s objectives was to determine the economic benefits of reuse from a library of standard objects inherent in an I-CASE environment. The researchers determined that the maximum benefit would be if a program went from a Level 1 to a Level 3 with 70% reuse. While this could not be observed with actual program data, the data from the same SSC program were used to predict the benefits of reuse, as illustrated on Table 9-1. They found when process improvement is combined with effective reuse of Ada, even higher levels of savings/productivity and improved reliability are possible.

�

Table 9-1	Impact of Reuse and Moving from Level 1 to Level 3 (113,465 SLOC from reuse)

The report concluded that significant reductions in cycle time (where cycle time is defined as the time to take a request for a new capability and field that capability) can be achieved by effective exploitation of reusable libraries of proven modules (objects) in modern Ada, I-CASE, and other object-oriented environments. Reduced cycle time benefits can also be realized in effort/cost and reliability (fewer defects and longer MTTD). Table 9-2 illustrates the benefits of reuse at 70% for an SSC program at a Level 3.

�

Table 9-2 Impact of Reuse at SEI Level 3 (113,465 SLOC from reuse)

�tc "<Head 3 (14)>"�

Reuse on the F-22 Program�tc "<Head 3 (14)>Reuse on the F-22 Program"�

The F-22 production contract requires the implementation of a software development reuse program, of which the F-22 SPO is an active participant. The three prime contractors (Lockheed Aeronautical Systems Company, Lockheed Fort Worth Company, and Boeing Military Aircraft) and multiple subcontractors are networked through a common system/software engineering environment (S/SEE). Electronic conferences among team members distribute reuse information (e.g. reuse item description, name of original developer(s), currently known reusers, and security requirements).

F-22 software reuse is not limited to operational flight programs (OFPs), but includes compilers and support tools such as debuggers which are combined into extensions hosted on the S/SEE. While engineering simulations are usually developed ad hoc, many are being developed according to a structured method and documented for future reuse. Specific requirements are also included in some simulations (and OFPs) to allow for reuse. Reuse agreements are documented between the developer and any known reusers on items such as budget, schedules, risks, and maintenance approach. Software reuse is being implemented on the F-22’s weapon systems, air vehicle, support systems, and training systems, wherever practical, feasible, and cost-effective.

[CHRISTENSEN94]

Reuse on the F-16 Upgrade Program�tc "<Head 3 (14)>Reuse on the F-16 Upgrade Program"�

Contracts for the F-16 �xe "F-16 Fighting Falcon:Modular Mission Computer"�Modular Mission Computer and F-16 Mid-Life Upgrade programs require software reuse through the addition and deletion of functional components. This means software artifacts (design, documentation, and code) must be designed and developed for reuse. Future systems based on this design will benefit from substantial cost and schedule reductions through systematic reuse-based software development. [CHRISTENSEN94]

Reuse at Hewlett-Packard (HP)�tc "<Head 3 (14)>Reuse at Hewlett-Packard (HP)"�

Hewlett-Packard (HP) has collected metrics from many reuse programs which document improved quality, increased productivity, shortened time-to-market, and enhanced economics resulting from reuse. Because work products were reused many times, accumulated defect fixes result in higher quality products. Productivity has increased because reused products are previously created, tested, and documented. Reuse has reduced time-to-market when effectively placed on the development program’s critical path. Personnel expertise has been leveraged because reuse allows experienced software engineers (reuse “producers”) to concentrate on creating work products which less experienced personnel (reuse “consumers”) then reused. Table 9-3 illustrates the results of reuse at two HP software development divisions.

�HP MANUFACTORING DIVISION�HP TECHNICAL GRAPHICS DIVIDSION��Quality�51% defect reduction�24% defect reduction��Productivity�57% increase�40% increase��Time-to-market�Data not available�42% reduction��Table 9-3 Relative Cost to Produce and Reuse [LIM94]

HP realized that software reuse is not free. Reuse costs include creating or purchasing reuse products, libraries, tools, and implementing reuse-related processes. Table 9-4 summarizes the costs of reuse on the �xe "Federal Aviation Administration (FAA):Advanced Automation System (AAS)"�FAA’s Advanced Automation System (AAS) and two other HP programs. They found the relative cost of creating an AAS reusable component was about twice as much as creating a nonreusable one; and the costs to integrate reused components into new products was about 10% of the cost to create it. On the MIS system, the relative cost of producing a reusable component ranged from 120 to 480% the cost of creating a nonreusable one, of which integration costs ranged from 10 to 63% of the total cost. On the graphics system, the cost of creating a reusable component was 111% the cost creating a nonreusable one, of which integration costs were 19%.

�AIR TRAFFIC CONTROL SYSTEM�MENU AND FORMS MIS�GRAPHICS FIRMWARE��Relative cost to created reusable component�

200%�

120 to 480%�

111%��Relative cost to create reusable component�

10 to 20%�

10 to 63%�

19%��Table 9-4 Quality, Productivity, and Time-to-Market Profiles [LIM94]

Given the cost of reuse, it is essential to track the economic return on investment (ROI) an organization receives for its reuse efforts. To determine their ROI, HP developed a relative cost model that defines development with reuse as a proportion of a baselined program. The model’s net-present-value method arrives at a cost/benefit value by subtracting the producer investment cost of making reusable work products from the saved net consumer development costs. Thus, the net-present-value method takes the estimated value of reuse benefits and subtracts them from associated investment costs, taking into account the time value of money. The model covers the entire life cycle (including maintenance), accounts for risk, and recognizes potential increased profit from shortened time-to-market. Because shortened time-to-market is difficult to assess, HP uses a conservative overall economic benefit estimate. Table 9-5 illustrates the net-present-value economic analysis for the two HP software divisions analyzed.

�

Table 9-5 HP Reuse Program Economic Profiles [LIM94]

Reuse Programs�tc "<Head 2 (14)>Reuse Programs"�

Consult the Air Force �xe "Computer Systems Authorization Directory (CSAD)"�Computer Systems Authorization Directory (CSAD) for information on reusable assets in your domain. There are several reuse programs within DoD and the Air Force providing a network across all domains to assist in implementing reuse within your program. Major programs focusing on the institutionalization of software reuse include the following.

NOTE: 	See Volume 2, Appendices A and B for information on how to contact the following reuse programs.

Software Technology for Adaptable, Reliable Systems (STARS)�tc "<Head 3 (14)>Software Technology for Adaptable, Reliable Systems (STARS)"�

The STARS program, sponsored by �xe "Advanced Research Projects Agency (ARPA)"�ARPA, is contracted through the Electronic Systems Center (ESC), Hanscom AFB, Massachusetts. STARS objectives are to demonstrate the benefits of reuse, provide transition support to reduce the risk of incorporating reuse in the systems engineering process, and to ensure basic capabilities (process and technologies) are available for support. The STARS strategy is to change the way DoD develops software through megaprogramming. Instead of developing code line-by-line, megaprogramming methods and tools support the capture and reuse of functional blocks of existing code by integrating them into new applications. Megaprogramming involves defining a family of applications that share common traits and characteristics (a product-line), creating a product-line set of models, and building products based on the models while accumulating/using a set of domain-specific assets, as illustrated on Figure 9-7. Megaprogramming contains four elements:

•	Process-driven development,

•	Domain-specific reuse,

•	Technology support, and

•	Collaborative development.

�

Figure 9-7 STARS Megaprogramming

STARS process technology and transfer activities are organized to assist process insertion, usage, and improvement to promote �xe "Process:Focused approach"��xe "Development:Process-focused"�process-focused development of major software-intensive systems. STARS process-based development occurs when:

•	Organizational processes exist which are adapted and tailored to meet program and product goals;

•	Software development is guided by a defined process;

•	Environments and tools are integrated to support the defined process;

•	The defined process promotes collaboration and teamwork by making activities, roles, and dependencies clear; and

•	Discipline and automation support continuous improvement of the defined process through measurement and feedback.

The STARS conceptual framework for reuse supports the evolution of software engineering from ad hoc solutions to “engineering discipline.” The process-based development model, illustrated on Figure 9-8, addresses the interactions between major participants in process development. These include process definers, process users, process improvers, and those responsible for process technology institutionalization. The main components of the model (i.e., the main STARS activities) are a process asset library, process definition technology, process enactment (use) support, process measurement technology, and process evolution concepts.

�

Figure 9-8 Process-based Development Conceptual Model

STARS has developed the �xe "Reuse:Reuse Strategy Model\: Planning Aid for Reuse-base"��xe "Models:Reuse Strategy Model\: Planning Aid for Reuse-base"�Reuse Strategy Model: Planning Aid for Reuse-based Projects. This model provides an assessment of your developer’s current reuse practices and identifies a set of possible goals that can be translated into realistic resource and schedule terms for your program. By conceptualizing measures to gauge progress against program goals. [RSM93]

The process-based technology sponsored by STARS is founded on SEI process concepts. [SEI is the lead in joint STARS/SEI Process ASSET Library activities.] STARS promotes automated tools for process-based technology (tools that support the emerging role of “process engineering”) by evolving commercially-supported software engineering environments. Ada systems development is the primary target for STARS technology, therefore, STARS sponsors formalizations of �xe "Models:Reuse Strategy Model\: Planning Aid for Reuse-base"�Ada process models and reuse processes that take best advantage of Ada’s features.

NOTE: 	See Volume 2, Appendix L for descriptions of STARS products and services.

STARS Space Command and Control Architecture Infrastructure (SCAI)�tc "<Head 4 (12)>STARS Space Command and Control Architecture Infrastructure (SCAI)"�

The STARS �xe "Software Technology for Adaptable, Reliable System:Space Command and Control Architectural Infrastruc"��xe "Space Command and Control Architectural Infrastruc"�Space Command and Control Architectural Infrastructure (SCAI) program (also known as the Air Force STARS Demonstration Project) the creation of a product-line at the Space and Warning Systems Center (SWSC), Peterson AFB, Colorado. Two command and control systems (one million LOC) were built in support of Cheyenne Mountain missions. A team of only 43 people (16 programmers) developed the systems in two years, achieving extremely low defect rates and reuse of better than 50%. The architecture-based product-line approach they implemented included:

·	Megaprogramming concepts,

·	Process technology,

·	Two life cycle model,

·	Cleanroom engineering,

·	Architectural infrastructure,

·	Object-oriented technology,

·	Domain experience,

·	Working applications,

·	Enhanced technology, and

·	Real program experience.

Prior to implementing the product-line approach, software development at the SWSC was performed in a stovepipe fashion where four systems were developed and maintained independent of each other. Cross-fertilization was unknown and the four teams worked in parallel performing the same tasks, maintaining the same spares, conducting the same training — all with lowered effectiveness. As illustrated on Figure 9-9, parallel efforts evolved into 34 separate operating systems, 27 languages, 12 millions lines-of-code, multiple proprietary hardware and software components, and complex SEEs.

�

Figure 9-9 SWSC Stovepiped Software Systems

Domain engineering was used to alleviate their stovepipe dilemma by developing an architecture-based product-line. They defined three software domains (air, space, and missile) based on a C2 architectural infrastructure that identified a common set of services (system, message handling, data management, and user interface), as illustrated in Figure 9-10.

�

Figure 9-10	Architectural Infrastructure is the Product-Line Approach Foundation

�Another benefit the product-line approach achieved was the formation of a product-line organization. The former stovepiped organization was reduced from 200 people to a matrixed one consisting of 132 people which mirrored the system architecture, as illustrated on Figure 9-11. Personnel expertise was assigned and organized by architecture functional areas:

·	Mission tasks were assigned to space mission experts,

·	Applications tasks were assigned to astronautical engineers,

·	Services tasks were assigned to system engineers, and

·	Application architectural modeling was assigned to system architects.

�

Figure 9-11 SWSC Product-Line Saved People Resources

As illustrated on Figure 9-12, the SCAI architecture-based �xe "Product-line"�product-line contributed to increased reuse on the �xe "Mobile Space Project"�Mobile Space Project. On Build 2 of 3, hand coding was reduced to 36.5%, code generator reuse was 50.5% and architecture infrastructure reuse was 10%. Compared to traditional software developments, the resultant benefits of this approach were impressive, as illustrated on Table 9-6.

�

Figure 9-12 Reuse on SCAI Mobile Space System Build 2

�TRADITIONAL�MOBILE SPACE SYSTEM��Schedule�42 months�13 months��Quality�2 defects/KLOC�2 defects/10 KLOC��Cost�$130/LOC�$47/LOC��Table 9-6 Traditional versus Mobile Space System Product-Line Approach

The SCAI AF/STARS project is proof that a standards-based architecture is the foundation of the product-line approach and the missing link in the reuse equation, as illustrated on Figure 9-13.

�

Figure 9-13 Architecture Is the Key to Reuse Success

NOTE:	Contact DISA [see Volume 2, Appendix A and B for information on how to contact them] about the �xe "Global Command and Control System (GCCS)"�Global Command and Control System (GCCS) �xe "Common Operating Environment (COE)"�Common Operating Environment (COE) and �xe "Global Combat Support System (GCSS)"�Global Combat Support System (GCSS) models.

Lessons-learned on the SCAI program indicated that there must be a significant paradigm shift for both the Government and its contractors for product-line reuse to succeed. As stated above, both parties must look beyond today’s contract toward future acquisitions and mission needs if we are to reap the cost and quality benefits of reuse. The obstacles the Air Force encountered to the institutionalization of this new paradigm are summarized on Figure 9-14. Money is appropriated for stovepipe development, not infrastructure. We would rather pay less now, not realizing it is going to cost us much more later. They realized this is mainly due to the nearsighted nature of defense acquisition. A much bigger issue than one program can tackle, this must be dealt with at higher levels in the decision-making process. The vision that an increased capital investment in infrastructure and product-line technology will reap quantifiable savings in the long-term has still to be understood and embraced. But perhaps this understanding and the beginnings of the paradigm shift will trickle up from grassroots, real-life examples such as the SCAI program.

�

Figure 9-14 Obstacles to the Product-Line Paradigm Shift

NOTE:	See Chapter 2, DoD Software Acquisition Environment, for a discussion on open systems architecture and the TAFIM. See Chapter 4, Engineering Software-Intensive Systems, for a discussion on SCAI domain engineering. See Chapter 16, The Challenge, Addendum “Reflections on Success” for a more complete description of the SCAI success story.

Asset Source for Software Engineering Technology (ASSET)�tc "<Head 3 (14)>Asset Source for Software Engineering Technology (ASSET)"�

Asset Source for Software Engineering Technology (ASSET) offers products and services in digital support, electronic commerce, and software engineering with an emphasis on re-engineering and reuse. ASSET, established by the �xe "Advanced Research Projects Agency (ARPA)"�Advanced Research Projects Agency (ARPA), as a subtask under the STARS program is transitioning to a private enterprise as a division of SAIC. ASSET offers the following support services to the software engineering community.

·	Library of reusable assets. A universally accessible library of reusable software assets and digital products is available through the �xe "Asset Source for Software Engineering Technology (:Worldwide Software Resource Discovery (WSRD)"�Worldwide Software Resource Directory (WSRD) which contains over 700 assets servicing over 1,500 users throughout the world. ASSET has established library interoperation with four libraries allowing our users Internet access to remote libraries. Through the WSRD, users can search, browse, and download assets cataloged in over 30 domains.

·	�On-line reuse information. On-line information of reusable technology, publications, and conferences is accessible through ASSET’s World-Wide Web pages (see Volume 2, Appendix B for ASSET’s Web address) which describe ASSET products and services, as well as information related to software reuse. ASSET’s catalog with titles and abstracts is also accessible through the Web.

·	Reuse brokerage services. Reusable software asset brokerage services and digital products, available through ASSET’s electronic commerce capability, can be ordered as well as delivered electronically. ASSET acceps credit card numbers either over the Internet or via an “800” number. Orders are shipped electronically or via diskettes, tapes, or hardcopy.

·	Custom digital libraries. Custom digital libraries are being tailored to special customer needs, either at the customer’s site or at ASSET’s site in Morgantown, West Virginia which is accessible through the Internet, the Web, or modem. The customer provides the assets and an access list which ASSET catalogs and makes available electronically while controlling library access. Monthly usage reports are provided to the customer.

�tc "<Head 5 (10)>"�

Comprehensive Approach to Reusable Defense Software (CARDS)�tc "<Head 3 (14)>Comprehensive Approach to Reusable Defense Software (CARDS)"�

CARDS has been assisting the Air Force and other agencies in the development of reuse strategies and their adoption since 1991. CARDS considers reuse an integral factor in creating mature software engineering organizations and practices within DoD. CARDS has demonstrated its skills by applying a wide variety of software methods used by DoD and industry communities. CARDS has also shown an in-depth understanding of the paradigms, processes, and methods needed to make reuse work in practice.

The CARDS program is an Air Force-sponsored program dedicated to furthering DoD and government agency objectives of widespread institutionalization of systematic software reuse into software acquisition, development, and maintenance. The CARDS mission is to develop a knowledge base of reuse products and processes and to perform technology transfer to other government organizations. The CARDS program is structured around the key elements of the DoD Software Reuse Initiative (SRI) Vision and Strategy (forerunner to the DoD Software Reuse Initiative Program). At the highest level, the DoD Vision for Reuse is “to drive the DoD software community from its current ‘re-invent the software’ cycle to a process-driven, domain-specific, architecture-centric, library-based way of constructing software.” Within this vision, planned reuse becomes an essential facet of each software development life cycle phase. CARDS has four main goals targeted to the Vision and devised to identify processes to support the �xe "Customer"�customer-focused goals of:

•	Being a premier resource for reuse knowledge which can be applied to improving policy and legal, acquisition, and engineering practices to support software reuse;

•	Being a premier resource for C2 knowledge and components;

•	Investigating and developing “advanced” reuse tools and techniques; and

•	Performing technology transfer through a comprehensive reuse adoption strategy tailored to each specific organization’s needs.

CARDS advocates the product-line approach supported by a systematic reuse-based systems engineering discipline. As discussed above, a product-line is a collection, or family, of software systems with similar or overlapping functionality and a common architecture that satisfies that set of system mission requirements. A product-line approach involves the development and application of reusable assets (technology base), the development of systems from a common architecture, and large-scale reuse of high quality assets. As your program moves from reuse awareness and understanding to a fully integrated reuse infrastructure, CARDS can provide the experience, lessons-learned, and technology at any point in your reuse efforts to ensure a smooth transition.

The CARDS program provides a comprehensive set of services: domain engineering, library tools and processes to assist with asset management; business and legal advice to ease the establishment of widespread reuse; and consulting/analysis services to better prepare an organization for the advent of reuse. CARDS has a repository of components and demonstration tools accessible on the Web [see Volume 2, Appendix B for information on how to access CARDS on the Web]. For instance, a demonstration of UNAS [discussed in Chapter 10, Software Tools] is available to help developers in determining whether it is applicable to their specific effort. CARDS also has hand-in-hand partnerships to assist reuse by key government organizations in the Air Force, Navy, and DoD. With the �xe "Reuse:Programs:Reuse Partnership Project"��xe "Comprehensive Approach for Reusable Defense Softwa:Reuse Partnership Project"�Reuse Partnership Project, technology transfer is facilitated by identifying government organizations that can benefit from interaction with CARDS. CARDS reuse adoption handbooks include:

•	Direction Level Handbook assists top-level managers (e.g., Program Executive Officials) in implementing software reuse within a given mission area.

•	Acquisition Handbook assists program managers, contracting, and legal professionals during the contracting/acquisition/maintenance phases of the software life cycle.

•	Engineer’s Handbook assists software engineers and other technical personnel by providing reuse development methods, techniques for reuse integration within their own software engineering processes, and support to the acquisition life cycle.

•	Component Developer’s Handbook provides a technical basis for creation of components and tools for domain-specific reuse libraries.

•	Tool Vendor’s Handbook assists commercial tool vendors in developing tools to support the reuse process.

•	CARDS library operation and maintenance documents.

•	Training and educational materials. [How to obtain these CARDS products is discussed below.]

The handbooks are comprehensive and should be consulted by all team members. For instance, the CARDS Acquisition Handbook should be read by all program management personnel. It provides a business framework for incorporating domain-specific reuse into the acquisition life cycle for all major defense systems. It contains guidance on how to encourage reuse, beginning with the establishment of an �xe "Acquisition:Strategy:panel"�Acquisition Strategy Panel (Team) and the development of an �xe "Acquisition:Acquisition Plan"�Acquisition Plan [discussed in Chapter 12, Strategic Planning]. It guides in writing the RFP and managing the development effort, as well as follow-on support. It contains recommendations, techniques, and methods for implementing various reuse strategies. The implications and effects of software reuse on the technical, management, cost, schedule, and risk aspects of a program/system during the acquisition and contractual processes are also covered.

While initial CARDS efforts have focused on the command center domain, CARDS also supports other domain libraries. CARDS serves as a testbed for emerging technology and provides a framework for developing and testing other model-based domain-specific reuse libraries. �xe "Training:Central Archive for Reusable Defense Software (CAR"��xe "Comprehensive Approach for Reusable Defense Softwa:Training programs"�CARDS training courses are key to successful adoption of reuse in your program. A training plan and system/software engineer’s course (how to integrate library-assisted, domain-specific reuse into your program’s software development life cycle) is recommended for all personnel. These courses focus on the education of software professionals and support the elimination of cultural barriers to reuse.

�

Portable Reusable Integrated Software Modules (PRISM)�tc "<Head 3 (14)>Portable Reusable Integrated Software Modules (PRISM)"�

Sponsored by the ESC and in cooperation with CARDS, the PRISM program has established a �xe "Portable Reusable Integrated Software Modules (PRI:Command Center Store"�Command Center Store and a model-based reuse library, services, and resources to support the rapid creation of command center capabilities. PRISM was founded on the premise that reuse should be architecture-driven. PRISM provides user-defined rapid prototyping, a generic command center architecture, and a repository of pre-qualified components. It contains existing command center implementations (with 80% functionality) and greatly reduces the time required to develop and field command centers while improving system quality.

�tc "<Head 5 (10)>"�

Defense Software Repository System (DSRS)�tc "<Head 3 (14)>Defense Software Repository System (DSRS)"�

The DSRS program was established to develop common technical and management reuse solutions across the DoD MIS domain. Operationally, it provides DoD MIS contractors and government personnel a user-friendly way to acquire reusable software assets. It has a full-service library that contains a high volume of assets having passed a formal certification process to ensure quality. The library contains requirements, design specifications, architectures, design diagrams, source code, documentation, and test suites. The repository uses a domain-based, architecture-centric approach for cataloging and evaluating assets. In addition, it uses domain analysis to identify reuse opportunities and high-demand assets and promotes a consistent, coordinated approach to reuse.

Electronic Library Services and Applications (ELSA)�tc "<Head 3 (14)>Electronic Library Services and Applications (ELSA)"�

The �xe "Electronic Library Services and Applications (ELSA"�ELSA project [formerly AdaNet] is the operational part of the �xe "Repository-Based Software Engineering (RBSE)"��xe "Reuse:Programs:Repository-Based Software Engineering (RBSE)"�Repository-Based Software Engineering (RBSE) program. The RBSE is sponsored by NASA and dedicated to introducing and supporting common, effective approaches to designing, building, and maintaining software systems by using existing software assets stored in a specialized library. In addition to operating a software life cycle repository, RBSE promotes software engineering technology transfer, academic and instructional support for reuse programs, the use of common software engineering standards and practices, and interoperability among reuse libraries/repositories. [See Appendix A for information on how to contact the ELSA project.]

Interoperability Among Software Reuse Libraries�tc "<Head 4 (12)>Interoperability Among Software Reuse Libraries"�

Trilateral interoperability between STARS ASSET, Air Force CARDS, and the DSRS libraries became operational in June 1993. A distributed file system transfers assets among the repositories and allows users transparent access to each library system. This approach was implemented in preparation for the expected growth in domain-specific reuse libraries and is a move towards a large virtual library system.

DSSA ADAGE Program�tc "<Head 3 (14)>DSSA ADAGE Program"�

The �xe "Domain-Specific Software Architecture (DSSA)"�Domain-Specific Software Architecture (DSSA) program was conceived by ARPA as a proof-of-concept for STARS megaprogramming. The DSSA �xe "Domain:Domain-Specific Software Architecture (DSSA):Avionics Domain Application Generation Environment"��xe "Avionics Domain Application Generation Environment"�Avionics Domain Application Generation Environment (ADAGE) program, which started in 1991, is a joint industry/university research effort designed to apply leading edge basic research to real-world problems.

The DSSA ADAGE approach to component-based de�velopment hinges on the creation of a reference ar�chitecture — a generic high-level design — for inte�grated avionics systems. This research has concentrated on creating generic (domain-specific software) architectures and parameterized components that can be used through�out the development process. The goals of the DSSA ADAGE project are to de�sign, document, and develop a set of avionics domain-�specific software architectures, avionics software mod�els, a language for their representation and composi�tion, tools for recording avionics knowledge, and tools will enable the rapid development of requirements and software for avionics functions.

DSSA ADAGE aims to free software and system designers from the routine aspects of avionics devel�opment, thus giving them time to concentrate on engineering the best solution for their customers. The strategy for reaching this goal is to provide system designers with large configurable components which are easily adaptable to various applications, within an architecture that is open for new functionality.

The DSSA ADAGE architecture-based development process is patterned after Boehm’s spiral development model [discussed in Chapter 3, System Life Cycle and Methodologies]. It adds the concept of using architectures and components to aid in the rapid construction of prototypes and systems, thus reducing the development cycle. One critical risk in prototyping is the amount of effort required to convert the prototype into a production-quality system. Wherever possible, architecture-based development reduces this risk by using the same components for the prototype as for the production system. In addition, it uses historical data and formal semantics of architectures and components to quantify the completeness, correctness, and risks in each stage of a system’s evolution.

Avionics domain analysis has shown that developers cannot rely on analytical methods to demonstrate that algorithms or equations will meet requirements. Therefore, developers must test the system through a series of simulations — from simple models and scenarios, progressing through a series of increasingly precise simulation environments, and ending with flight test. A critical feature of an effective avionics development process, therefore, is the ability to rapidly analyze, develop and modify versions of the avionics system (from early prototypes to fielded systems).

The initial DSSA ADAGE domain analysis resulted in the specification of high-level navigation, guidance and flight director functional architectures, as illustrated in Figure 9-15. The capabilities required for providing aircraft flight path management were assessed and allocated based on the functional definitions. This architecture was then compared against other published avionics architectures. The results indicated that this architecture is relatively standard across the industry and hence a likely candidate for consensus building.

�

Figure 9-15 High-Level Architecture View of DSSA ADAGE

Several benefits of rapidly reconfiguring large components are expected. Costs and schedules can be reduced because the architecture provides the high-level software design while the components provide the detailed design and implementation. Thus, large parts of the design and implementation phases of a program can be eliminated. Parts of the system design can be validated earlier in the life cycle by using the same software for simulation and production. Fewer errors will be inserted into the reconfigured software since there is no hand translation of detailed algorithms from requirements to code. The potential for customer dissatisfaction with the final product can be reduced because initial subsets of the system are built rapidly for customer validation. Finally, the architecture provides a long-term baseline upon which engineers can design improved algorithms and new features. [TRACZ94]

RICC�tc "<Head 3 (14)>RICC"�

�xe "Tools:Reuse tools"��xe "Reusable Integrated Command Center (RICC)"�Reusable Integrated Command Center (RICC) is a methodology developed by the USSPACECOM and the AFSPACECOM to reverse soaring cost trends in software development and maintenance. The RICC approach builds C2 systems more quickly, cheaper, with higher reliability and maintainability. Cost and performance problems are management concerns the application of technology (Ada) alone cannot cure. While Ada provides a way to solve low-level problems (e.g., by facilitating reuse), the RICC approach identifies underlying management deficiencies causing software development problems. RICC examines how success is measured in development organizations to gain an understanding of the life cycle implications management has on software development. [FRASER93] [For more information about RICC, contact SM-ALC/TIEFA, Building 618, 4235 Forcum Avenue, McClellan AFB, California 95652-1504.]

ADDRESSING REUSE IN THE RFP�tc "<Head 2 (14)>ADDRESSING REUSE IN THE RFP"�

When preparing your RFP, you should require that offerors propose software architectures that facilitate reuse — both internally to the instant software development and from external sources. Offerors should be made aware that there will be rewards (both in source selection and after contract award) to the extent that they can shorten schedules and reduce costs through reuse. This can be accomplished through source selection criteria, special performance incentives (including award fees), and by providing access to �xe "Government-furnished-software (GFS)"�GFS. Performance and fee incentives based on reuse are not only methods for promoting reusable software, but are also ways for ensuring the offeror — once brought onboard — follows through with the plans for reuse submitted in their proposal. Several activities should be performed to plan for reuse during acquisition:

·	Technical input to the Acquisition Strategy Panel (ASP) should address reuse.

·	Systems engineering trade studies should be conducted to identify and quantify alternative reuse approaches.

·	Dialogue with the user should be promoted to assure a balance between requirements, cost, schedule, and reuse.

·	If existing, reusable software meets requirements, obtain it. Reuse of existing software saves money and improves reliability by using already proven software assets.

·	If existing software requires some modification before it can be properly integrated with your system, analyze the cost/benefits of doing so. Be aware, the cost to modify existing software can sometimes be greater than the cost to develop equivalent new software from scratch. [PRESSMAN92]

·	Encourage the use of COTS, GOTS, and common tools within the SEE.

·	Encourage reuse of common components by contractors and across multiple contractor teams.

NOTE:	See �xe "MIL-STD-498"�MIL-STD-498, Appendix B, for guidance on incorporating the requirement for reusable products in you RFP.

Be aware that mandating specific approaches to reuse or directing the use of specific reusable assets introduces program risk, and is inconsistent with current acquisition reform initiatives intended to eliminate “how to” requirements. ASPs and resulting RFPs must consider the risks and benefits of reuse. For embedded weapon systems reuse should be promoted and implemented at the appropriate level. Some domains may be able to exploit reuse at the software level, but reuse of entire systems or subsystems has the potential for greater pay back while still supporting the objective of delivering world-class, reliable software that costs less to develop and maintain.

If you determine that extensive software reuse is not feasible for your immediate acquisition, you should carefully consider the cost, schedule, and technical benefits/risks associated with requiring that your contractor use a product-line approach that facilitates reuse in future DoD applications. Your RFP should state that designing for reuse is a desired program objective and that a solution based on 100% newly developed code is not. In addition, offerors should be encouraged to propose the use of COTS for cost effective satisfaction of as many upfront requirements as possible. If the total solution cannot be accomplished with COTS and reuse, extra source selection points should be given to offerors who can evolve the system over time to satisfy 100% of the requirements through the use of COTS. Contractors should be expected to take full advantage of the government software reuse repositories specific to your program domain.

NOTE:	The �xe "Reuse:DoD Reuse Initiative Program"�DoD Reuse Initiative Program and the Air Force Software Reuse Implementation Plan should be consulted when developing the SOW, CDRLs, and evaluation criteria for any contract requiring software reuse as part of the software development. Also refer to MIL-STD-498, Volume 2, Appendix D.

�A FINAL WORD ON REUSE�tc "<Head 2 (14)>A FINAL WORD ON REUSE"�

The major barrier to reuse, and especially to the use of COTS products, has been the fact that 100% of described user requirements cannot be satisfied in this manner. Traditionally, users have insisted on having 100% of their requirements met — which has demanded custom-developed software.

It is now recognized that many programs for which millions have been invested, which never provided the promised capability, failed for lack of realistic requirements. In fact, programs which have been terminated, some with much notoriety, have been diagnosed in post mortem to have been the victims of continually changing or overly precise requirements. With each change the time to delivery is extended, during which environmental changes sufficiently warrant additional changes in requirements. This extends delivery time — resulting in more requirements changes!

The obvious answer is to tradeoff upfront requirements and time. If 80% of requirements can be produced using reusable components, including COTS packages, costs can be reduced by 30-60% and delivery time is frequently reduced by one-half to two-thirds. In effect, this is a form of evolutionary acquisition/development where the initial 80% solution can be quickly implemented, to be followed by refinements (often available from subsequent COTS products or revisions to existing products) which will approach the 100% solution — at a fraction of cost of a totally-customized development.

The best news is that with reuse, instead of the notoriety arising from a post mortem, the program manager and user will be congratulated for beating original cost and schedule estimates, and will be cited as innovators who make things happen. BETTER TO BE A HERO THAN A HOBO!

REFERENCES�tc "<Head 2 (14)>REFERENCES"�

[AFRIP92] “Air Force Reuse Implementation Plan,” Air Force Software Management Division, HQ USAF/SCXS, The Pentagon, Washington, DC, September 18, 1992

[BLUE92] Blue, Dave, “Software Re-Use in Practice: A Reconfigurable F/18 OFP,” Tech-News, CTA Incorporated, Rockville, Maryland, April 1, 1992

[CALDIERA91] Caldiera, Gianluigi, and Victor R. Basili, “Identifying and Qualifying Reusable Software Components,” IEEE, February 1991

[CARDS92] Direction-Level Handbook Central Archive for Reusable Defense Software (CARDS), Informal Technical Report DRAFT-STARS-AC-04104-001099, Electronic Systems Center, Hanscom AFB, Massachusetts, September 24, 1992

[CHRISTENSEN94] Christensen, Steve, “Software Reuse Initiatives,” Lockheed Horizons: Masters of the Code, Issue 36, December 1994

[FISHER91] Fisher, David T., Myths and Methods: A Guide to Software Productivity, Prentice Hall, New York, 1991

[FRASER93] Fraser, Fred, “Reusable Integrated Command Center (RICC),” White Paper, SM-ALC/TIEFA, July 20, 1993

[GLASS92] Glass, Robert L., Building Quality Software, Prentice-Hall, Englewood Cliffs, New Jersey, 1992

[LENARD92] Leonard, George, as quoted by Lowell Jay Arthur, Improving Software Quality: An Insider’s Guide to TQM, John Wiley & Sons, Inc., New York, 1993

[LIM94] Lim, Wayne C., “Effects of Reuse on Quality, Productivity, and Economics,” IEEE Software, September 1994

[NEHRU58] Nehru, Jawaharlal, as quoted by Edgar Snow, Journey to the Beginning, 1958

[PAYTON92] Payton, Teri F., briefing, “Reuse Context,” presented at the STARS/Air Force Reuse Orientation, October 14, 1992

[PRESSMAN92] Pressman, Roger S., Software Engineering: A Practitioner’s Approach, Third Edition, McGraw-Hill, Inc., New York, 1992

[REUSE92] Air Force Standards and Guidelines for the Development of Reusable Software, Headquarters, US Air Force, August 31, 1992

[RSM93] Reuse Strategy Model: Planning Aid for Reuse-based Projects, Software Technology for Adaptable, Reliable Systems (STARS) Office, 9-5526, The Boeing Company, Task U03, CDRL 5159, July 31, 1993

[STARS92] Hart, Hal, et al., “STARS Process Concepts Summary,” TRI-Ada Conference Proceedings, Orlando, Florida, November 1992

[TRACZ94] Tracz, Will and Lou Conglianese, “An Adaptable Software Architecture for Integrated Avionics,” IBM Corporation, Federal Systems Company, Owego, New York, 1994

[VISION92] “DoD Software Reuse and Strategy,” Document #1222-04210/40, July 15, 1992

[YOURDON92] Yourdon, Edward N., Decline and Fall of the American Programmer, Yourdon Press, Englewood Cliffs, New Jersey, 1992

Version 2.0

CHAPTER 9 Reuse

9-� PAGE �33�

Version 2.0

9-� PAGE �2�

