Part 2: Engineering GSAM V

Chapter 12

Software Support

ersion

Chapter 12 : Software Support GSAM Version 3.0

Contents
i R O ¢ F= o (=T 0)Y V= SR 12-3
12.2 A Total Life Cycle APProachccccocoiieeciiiiiie e 12-4
12.2.1 Software SUppPOrt COSt DIIVELS......ccoiiiiieiieee e 12-5
12.2.2 Software SUPPOIt ACHVITIES......c.ueveiiiee e 12-6
12.2.3 Software SUPPOIt ISSUESceeiiuiereiiiieesiieeeeiiee e eiiee et 12-8
12.2.4 COTS Software SUPPOIt ISSUESccveeeiiieeeiieee e 12-10
12.3 Planning for SUPPOIt SUCCESSceveieiiieeeeeeiiiieeeeeeiiiee e e e e 12-10
12.3.1 Software Support Cost ESIMationccceeevvieeeirieeeenieee e 12-11
12.4 Software ReeNQIiNEEIiNGcccoiiiiiieeiiiiiieee e e e e 12-12
12.4.1 Reengineering DECISIONuuveiiiiieiiiieeesiieeeesiee e 12-12
12.4.2 ReenginNeering PrOCESS.cuuveiiieie it esiiee et 12-13
12.5 Logistics Support Analysis (LSA)ccceeeee i 12-14
125.1 LSA onthe F-22 Program.........cccceiiieeeiiieee e 12-16
12.6 Continuous Acquisition and Life Cycle Support (CALS)................... 12-17
12.7 Managing a PDSS Programcccccoecieeeeiiiiiieee e cesiieee e esireee e 12-18
12.7.1 Computer Resources Integrated Support Document (CRISD) 12-19
12.8 Addressing Software Supportinthe RFPccccoooiiiee i, 12-20
12.8.1 Specifying Supportable Software.........cccoceveivieee e 12-22
12.8.1.1 Statement of Objectives (SOO)cccvvvveeiiiiieeiieee e 12-22
12.8.1.2 Specification PractiCes..........cocveveiiieeeiiiiee e 12-22
12.8.1.3 DOCUMENEALIONeveeiiieeeiiiieeeiiee e iiee et e e e 12-23
12.8.1.4 Life Cycle Software Support Strategiesccccevvveeevieeeeennen. 12-23
12.9 RETEIEINCES oottt e e neee e 12-25

12-2

Chapter 12 : Software Support GSAM Version 3.0

12.1 Chapter overview

In Operation Desert Storm the intensity of battle coupled with large forces using Information
Ageweaponry and communications created the most intense el ectronic battl efield ever witnessed.
The E-3 Airborne Warning and Control System (AWACYS) was an integral part of the battle
serving as the “eye” that tracked all battle space aircraft and directed interceptions while
safeguarding our forces from surprise enemy aerial attack. The overwhelming density of diverse
electronic signals transmitted and received created such a congested environment that the E-3s’
full mission capability was greatly hindered. This E-3 problem had to be quickly corrected and
a dedicated software support team sprung into immediate action. The E-3 radar software was
rapidly revised, flight tested, and on its way to deployed aircraft within 96 hours. This quick
reaction, modification, and change-out during the heat of battle emphasizes the operational
necessity for easily supportable software.

The ability to continuously support our major software-intensive systemsis aparamount mission
requirement. Supportability iscritical because thereisaways an inevitable need to correct |latent
defects, modify the system to incorporate new requirements, enhance the existing system to add
capability, and alter it to increase performance. The ability to accommodate changeisan integral
requirement of major software-intensive systems.

Unfortunately, when we have fielded unsupportable systems, we have often had to expend
considerable time and funds to provide the required support or we have had to abandon them
altogether. We learned that it is far more cost-effective to address supportability as we define
requirements, design the system, and plan for its operational life. In this chapter you will learn
how to reduce the risk of acquiring, managing, and maintaining software-intensive systems by
ensuring that they are modifiable, expandable, flexible, interoperable, and portable — i.e,,
supportable.

Software support, often called redevel opment, addresses the mai ntenance life cycle phase where
maj or software costs occur. Support planning addresses the development acquisition and entails
request for proposal (RFP) development that provides for delivery of full documentation, data
rights, and delivery of the software engineering environment (SEE) used by the developer.

When tasked with maintenance responsibility of legacy software which has becometechnologically
obsolete, has deteriorated through years of changes, or must be changed anyway to work with
new hardware or other software, it may be cost effectiveto reengineer it. Thisinvolvessystematic
evaluation and alteration of an existing system to reconstitute it (or its components) into a new
form or converting it to Ada to perform within a new operational environment, to improve its
performance, or to reduce maintenance costs. This process can combine several subprocesses,
such as reverse engineering, restructuring, redocumentation, forward engineering, or retargeting.

12-3

Chapter 12 : Software Support GSAM Version 3.0

12.2 A Total Life Cycle Approach

With the exception of the B-2 bomber, DoD will not be purchasing any additional bomber aircraft
in the foreseeable future. Procurements of new, advanced fighter aircraft [i.e., the F-22 or Joint
Advanced Strike Technology (JAST)] will not occur until the early 2000s. Thus, we havetorely
on existing aircraft platforms for several years. The recent modification to the B-1B Lancer isa
prime example of this. The B-1B isbeing upgraded to aconventional munitions capability. The
bulk of the effort focuses on the enhancement and modification of the B-1B’ s offensive avionics
software component. These trends indicate that the future capability of our major software-
intensive systems is inexorably dependent on our ability to cost-effectively maintain them.

Software maintenance is really a poor name for the post-deployment software support (PDSS)
activity. In other engineering contexts, maintenance implies repairing broken or worn-out parts.
But software does not break — nor doesit wear out. Itisfor thisreason that PDSSis often called
the redevelopment phase. As defined by the Institute of Electrical and Electronics Engineers
(IEEE), software maintenanceis

The process of modifying asoftware system or component after delivery to correct faults, improve
performance or other attributes, or adapt to a changed environment. [IEEEQQ]

Software is alivel Whether it is in production or not, it is always in the process of becoming,
evolving, changing. Research on software maintenance shows that user requirementsimpacting
software account for 41% of post-deployment support costs, while hardware changes account
for 10%. [BASSETT95] That isto say, over half of all software support isdriven by changesin
the system’s external environment. Because software must evolve in response to its external
environment, it ismorelikealiving thing than an inanimate object that only needs to be designed
once, and thereafter, infrequently repaired or maintained. With software, development (and
redevel opment) isthe normin responseto external changes. Therefore, designing for maintenance
must be incorporated and unified with development.

Software support is different from but includes the same activities as development. Itisdifferent
because the devel oper has no existing system from which to work; whereas, the maintainer must
be able to read and understand already existing code and solve problems within an existing
framework which constrains the solution set. The developer has no product knowledge because
the product does not yet exist. The maintainer must have complete product knowledgeto do his
job well. Support is the same as development because the maintainer must perform the same
tasks as the devel oper, such as define and analyze user requirements, design a solution (within
the constraints of the existing solution), convert that design into code, test the revised solution,
and update documentation to reflect changes. Figure 12-1illustrates how support tasks correspond
to and mirror the development process. [GLASS92]

12-4

Chapter 12 : Software Support GSAM Version 3.0

Updating

documentation (5%),

Reviewing
documentation
(5%)

Testing and
debugging
(30%) Understanding
the product
Tracing ¢ (30%)
logic (25%)

Implementing
the change
(20%)

Figure 12-1. Support Tasks Superimposed on the Software Development Phase

12.2.1 Software Support Cost Drivers

The demand for delivering high quality software support in time has never been greater. However,
software support is by far the biggest life cycle cost driver and the most significant source of
systemrisk for all major DoD software-intensive acquisitions. Although software support occurs
during the post-deployment phase, it must be planned for upfront during requirements definition
and design. It must also be budgeted for and continuously addressed throughout the system’s
life. Developing supportable software is one of the most important criteria for software success.
All the causes of cost and schedule overruns, performance shortfalls, and for programs being
thrown off stride are amplified once the system isin the hands of the maintainer. Therefore, the
Software Crisis has primarily been the Maintenance Crisis. According to numerous DoD and
industry studies, the typical cost to maintain a software product isfrom 60% to 80% of total life
cycle costs. Y our challengeisto minimizethe cost of software maintenance, and to avoid being
at the heart of the Crisis. These costs are depicted on Figure 12-2.

12-5

Chapter 12 : Software Support GSAM Version 3.0

Data Processing Large, Complex Systems
Environments Environments

Development

Validation 20%

21%

Maintenance
49%

Requirements/
Design
13%

Implementation Maintenance
9% 80%

Other
8%

Figure 12-2. Life Cycle Support Costs

These cost increases during the software maintenance phase have historically been caused by
dramatic decreases in productivity (measured in lines-of-code (L OC)/manmonths or function
(feature) points/manmonths.) Productivity drops of 40:1 have been reported during software
support. [BOEHM81] For example, what cost $150/L OC to develop might cost $1,000/LOC to
maintain. This significant increase in system cost demands that basic decisions about how the
software will be maintained be made during the concept and design phases. Easy accessto the
software and an inexpensive medium for distributing enhancements can have significant effects
on life cycle costs. A well thought out concept of operations includes hardware provisions for
spare connectors, card slots, and memory capacity to facilitate interoperability to new software
systemsasthey arefielded and integrated into the defenseinventory. [PIERSALL94] A flexible,
modular architectureisalso essential for ensuring understandability, modifiability, interoperability,
reusability, expandability, and portability — all prerequisites for supportabl e software.

12.2.2 Software Support Activities

Figure 12-3 is based on a study of 487 commercial software development organizations and
illustrates how software support changes are distributed among support tasks. Most software
support dollars are spent on defining, designing, and testing changes. After these activities are
performed (whether there is one unit or hundreds of unitsin the field), subsequent increasesin
cost are marginal. Support activitiesinclude:

* Interacting with users to determine what changes or corrections are needed,

e Reading existing code to understand how it works,

* Changing existing code to make it perform differently,

e Testing the code to make sure it performs both old and new functions correctly, and

* Delivering the new version with sufficiently revised documentation to support the user and
the product.

12-6

Chapter 12 : Software Support GSAM Version 3.0

f Problem Reports

Maintenance

21%

Enhancement
50%

 EE—
Refinement
25%

Other
4%

Threat - - - Doctrine - - - Technology

Figure 12-3. Causes of Software Changes [PIERSALL94]

During operational testing, supportability evaluations concentrate on software code, supporting
documentation and i mplementation, computer support resources, and life cycle process planning.
Due to its impact on software support, spare computing capacity is also examined. The four
areasthe Air Force Operational Test and Evaluation Center (AFOTEC) evaluatesfor supportability
areillustrated in Figure 12-4. For example, maintai nability evaluations consist of questionnaires
that concentrate on the specific characteristics of a maintainable system, such as consistency,
modularity, and traceability. Software supportability is evaluated by the developer when the
documentation and source code areinitially baselined (usually duringinitial integration test and
evaluation) and then periodically until the compl etion of software development. Theinformation
gained during integration testing hel ps the devel oper build more maintainable software.

SOFTWARE
SUPPORTABILITY

Software Spare Maintainabilty Computer
Life Cycle Computing Support
Process Capacity Resources
- Project - Ti_m_ing — Documentation _ Personnel
Manggem(_ent - Sizing — Source Listings - Equipment
- Configuration — Implementation _ Eacilities
Management

Figure 12-4. AFOTEC Software Supportability Evaluation Areas

12-7

Chapter 12 : Software Support GSAM Version 3.0

12.2.3 Software Support Issues

In theory, software never wears out! It has none of the physical properties found in hardware
which theforces of Nature and the operational environment can play on to cause physical systems
to declinein performance. When pieces of hardware begin their life span, they often haveahigh
failure rate (defects per unit time) because of problems created during manufacturing. Those
pieces that survivethe “infant mortality” period usually have lower failure rates (often for many
years) until components begin to wear out. At this point, the failure rate beginsto climb again.
Thistrend, called the “bathtub curve’ by hardware engineers, istruefor all hardware systems—
whether an automobile, aradio, or acomputer.

While software does not wear out in the physical sense, it does deteriorate! There are some
interesting similarities and differencesto be seen when the software failure rate i s superimposed
on the bathtub curve. Like hardware, new software usually hasafairly high failure rate until the
bugs are worked out. At which point failures drop to avery low level. Theoretically, software
should stay at that low level indefinitely because it has no tangible components upon which the
forces of the physical environment can play. However, after software enters its operational life
(during PDSS), it undergoes changes to correct latent defects, to adapt to changing user
requirements, or to improve performance. These changes make the software failure rate curve
steadily begin an upward journey. Hardware deterioratesfor lack of mai ntenance, whereas software
deteriorates because of maintenance! [GLASS92] By making changes, software maintainers
often inadvertently introduce “side-effects’ causing the defect ratetorise, asillustrated in Figure
12-5.

>

Hardware

=== Software (in theory)
\ Software (in practice)
Cch Change
‘\ Chz—;nge Change Change ez_)nge 6
2 e 4

m-H»a$maycr—>»m

N — — — " — " — " — " — — " —

Figure 12-5. Bathtub Curves for Hardware and Software

Although side-effects can be quite complex, most are caused by one thing — there are no spare
parts for software! When software fails the part causing the failure cannot simply be replaced
with aspare. When softwarefails, from defectsinserted during maintenance, often the only way
to correct for the cause of failureisthrough design modification. Every timethedesignismodified

12-8

Chapter 12 : Software Support GSAM Version 3.0

it weakens the original structure (or how the modules work internally and with each other) and
eventually the software beginsto fall apart. Undisciplined maintenance (or that performed inthe
field under stressed conditions) frequently compounds the problem. Maintainers, struggling
against time to make corrections, modifications, or adaptations to new requirements, often
compound the defects created by thelast generation of maintainers. Intherush to get the product
to impatient users, they take short cuts — exacerbating the software’ s deterioration. Problems
arise when thereisafailureto modify the design when patches are made (causing the design and
codeto be out of synch). Problems also stem from afailure to update documentation or afailure
to use modern concepts of design and programming in the initial development.

M ost of the problems associated with software support can be traced directly back to deficiencies
in the way the original software product was planned, managed, and designed. Lack of sound
software engineering discipline, control, and attention to the design of modular software
architectures during development translates into software support problems resulting in excessive
maintenance costs. Some classic software support issues include:

* Lack of requirementstraceability;

* The evolution of software versions or releases that are difficult or impossible to trace [the
evolution of changes that are not documented];

* Unavailability of the software development tool set (compilers, loaders, etc can have impacts,

* Impossible to understand code [software understandability usually increases as the number
of software modules increases];

* Documentation that is nonexistent or of such poor quality that it is useless [documentation
must be understandable and consistent with the source code to be of value]; and

* Inflexible software not designed to accommodate change [unless the architecture allows for
change, modifications to the software are difficult and defect-prone]. [PRESSMAN92]

Thislast point is, perhaps, the most critical deficiency. The software architecture should carefully
address abstraction, encapsulation, and information hiding to minimize dependencies. By
separating computational and operational detailsfrom interface calls, and by maximizing use of
object-oriented design, the software can be easily modified. Modifications can occur during
development and during post-deployment operation with lessrisk of introducing unwanted side
effects.

Many factors play in the supportability equation. An undisciplined, poorly managed devel opment
process where design, coding, and testing were conducted with carel essness negatively impact
the support task. Design characteristicsthat affect software supportability include:

* Design complexity (including related attributes of software size, structure, and
interrel ationships);

e Stability and flexibility of the design itself;

* Adequacy of documentation to support PDSS;

e Completeness of the software development effort; and

* Extent and implementation of configuration management practices for both operational and
support software. [SHUMSKAS92]

12-9

Chapter 12 : Software Support GSAM Version 3.0

Other factors within the devel opment environment that impact software supportability include:

* Availability of qualified software personnel,

e System structure understandability,

* [Ease of system handling,

e Use of standardized programming languages,

e Documentation structure standardization,

e Test case availability,

* Built-in debugging mechanisms,

* Delivery of the original development SEE to the mai ntenance organization, and

* Availability of appropriate computer hardware to conduct maintenance activities.
[PRESSMAN92]

12.2.4 COTS Software Support Issues

Software support includes support of government-developed software, contractor-devel oped
software, and commercial-off-the-shelf (COTS) software. |ssues to consider when supporting
COT S software include:

* The acquisition agent must acquire appropriate documentation and data rights, licensing,
and subscription services (such as options to purchase or escrow proprietary information)
which allowsthe Government to support the softwareif contracted support becomesunfeasible.

* The software support activity (SSA) must maintain appropriate licensing and subscription
services (vendor field change orders and software rel eases) throughout the life of the system.

e COTS resources must not be altered so as to preclude contractor |ogistics support or void
licensing or subscription services.

* Thesupporting command must provide | ogistics support and contract for subscription services
required to update and maintain COT S assets. It must also eval uate operational and logistic
impacts of change due to subscription-related hardware and software upgrades.

* Theoperating command must provide atechnical review of proposed changes during upgrades
and changesto COTSassets. Itisresponsiblefor evaluating effectiveness and mission impact
of changes due to subscription-related software upgrades.

12.3 Planning for Support Success

Inrecent years, early planning for software support has become amain DoD acquisition priority.
Learning from costly past mistakes, the early F-22 planners wanted to make their weapon system
a“maintenance man’s dream,” according to Colonel John Borky, former director of ATF Avionics.
[BORKY90] Colonel Ron Bischoff, Air Logistics Center (ALC) system program manager for
the F-22, remarked, ““We are practicing [with F-22 support and maintenance design] what we
always said we were going to do, but never did...[Before] it was a build it, then fix it, way of
doing business.” [BISCHOFF91] In the past, the system program manager responsible for
supporting the aircraft was not assigned until late in the design process. Support problems were
not addressed until after an aircraft was deployed and maintenance problems occurred. F-22

12-10

Chapter 12 : Software Support GSAM Version 3.0

planners specified support requirements early, which then became part of the RFP. Colonel
Bischoff explained that planning for support success was accomplished by making it a source
selection criterion that support issues be addressed during the design stage.

Colonel Bischoff remarked that writing and maintaining software for the F-22 will be a much
larger task than for any other aircraft in history. He explained, “The F-22 leads DoDs list of the
most complex software projects, with a projected 7 million lines-of-code.” [BISCHOFF91] F-22
planners enforced consistency and compl eteness by mandating the use of Adafor all F-22 software
systems. By using Ada, all F-22 software engineers are forced to use common terminology, from
ground support systems to operational flight programs. Bischoff claims, “That was a major step
forward. Ada makes the software much more supportable because it is written in much clearer
text. Lack of documentation killed us in the past.” F-22 planners also enforced the use of a
common A da software engineering environment that provides uniform devel opment toolsfor all
the software devel opment team members.

To augment F-22 support success, Air Force and contractor personnel will work together as
integrated product teams (IPTs) to maintain F-22 software. To plan for this requirement, the
ALC F-22 system program office (SPO) has ALC software personnel involved shoulder-to-
shoulder with contractors so they will understand what is being done and why. Colonel Bischoff
boasted, “We’re already planning for the first update to the operational flight program within a
year or two after the first F-22 rolls off the production line!” [BISCHOFF91]

As discussed above, decreases in productivity during PDSS can be tied to increases in software
complexity the longer it isin the support phase. The more modifications made to the software
(especially to a poorly engineered product), the more complex it becomes with corresponding
increases in the introduction of defects. These exponential increases in effort (and cost) are
mainly the product of poorly engineered software. [PRESSMANO92] Therefore, planning for
supportability upfront is a major determinant of software development success. Software not
developed with maintenance in mind can end up so poorly designed and documented that total
redevelopment is actually cheaper than maintaining the original code. With today’ s shrinking
defense dollars, failure to make software maintenance a design priority would not only be poor
management on your part, but could very well result in an inability to support your product.

12.3.1 Software Support Cost Estimation

The variety and undefined scope of future changes throughout the software life cycle make
estimating support costs one of the most difficult — yet most important activitiesto consider due
to itsimpact on the DoD budget. Most software estimating models estimate software support
costs; however, the types of activities and the costs included in their estimates vary significantly
from model to model. Most parametrically-based software support estimating models provide a
top-level approximation of sustai ning engineering and support requirements. They do not produce
estimates that can be reliably used alone as the basis for a software support budget or similar
purpose. Once software has been transferred into a support environment, changesto the software
(especially major changes or additions to basic software functionality) must be estimated using
software model s calibrated to the redevel opment environment.

12-11

Chapter 12 : Software Support GSAM Version 3.0

12.4 Software Reengineering

The concept of reengineering is relatively new within the software development community.
The motivation behind reengineering isto get ahandle on the ever-growing software mai ntenance
burden. Therapid evolution of software and hardware technology over the past 20 years has | eft
DoD with a legacy of millions of lines of failure-prone code, written in a conglomeration of
languages, running on a hodgepodge of incompatible hardware.

“Reengineering” isdefined as the examination and alteration of a software system to reconstitute
and re-implement it in anew form. The reengineering process involves recovering the design
from an existing application and using that information to reconstitute it to improve its quality
and decrease maintenance costs. While reengineering re-implements existing system functions
in a better, more efficient manner, new or improved functions are often also added.
[PRESSMAN92]

12.4.1 Reengineering Decision

Reengineering of old, worn-out or obsolete code is often economically justified. The lengthy
DoD acquisition process often takes a decade or more for large software-intensive systems to
comeon line. By industry standards, military softwareis often obsolete beforeit entersthefield,
at which point a 20-year operational life usually lies ahead. The cost of maintaining software
over its extended life can be from two to 10 times as much asthe cost to initially develop it. The
decision to reengineer softwareis often one based on the premiseto ““pay now or pay much more
later.”” [PRESSMAN92] There are basically three situations when reengineering is beneficial .
These include:

* When the existing system has become technologically obsolete and must be replaced;

* When the existing system has deteriorated to the point where it has severe technical problems,
and

* When it might be expedient to upgrade the existing system. [SNEED91]

You may choose to reengineer if you reach the conclusion that it is better to pay now, rather than
waiting to pay-much-more-later. “Paying now’” iswhat Perry callsavoiding the rathole syndrome.
He defines a rathole as the dark place where software maintainers throw their money with no
possibility of return on investment. He equates the legacy software rathole with the old car
rathole. Inthe short-term, it is cheaper to fix your old car than it isto buy anew one. But over
an extended period, the out-of-pocket expense for parts and labor to patch your old clunker will
cost you more without increasing its resale value than investing in anew car. He also explains
that software maintenance ratholes are like ratholesin the woods. Once you plug one up, therat
digs another. [PERRY 93] Reengineering, when cost effective, can provide you with away to
plug up all your ratholes and have anew system with all the bells and whistles your user desires.
It may well be the long-term, low-cost solution to your software maintenance problems. The
reasons to reengineer include:

12-12

Chapter 12 : Software Support GSAM Version 3.0

¢ To reduce maintenance costs,

e To decrease defect rate,

e To convert to a better language or hardware platform,
e Tolengthen the life-span, and

e To enable changesin the user’ s environment.

Another reason to reengineer is often based on the logical migration of the system. Since the
system has to be dramatically changed anyway, it might as well be upgraded to more current
technology. Y our reengineering decision must be based on athorough feasibility analysis of the
costs, benefits, and risks involved in continued patching (if possible) versus redevelopment
(starting from scratch) versus reengineering. Thisanalysisisbased on acalculation of thetarget
system’ s expected lifetime and the comparison of reengineering costs with the costs of a new
development. A ruleof thumbis, reengineering is a viable alternative when the cost to reengineer
is not more than 50% of the cost to redevelop. It may also be determined that it istoo expensive
to reengineer the entire system. [SNEED91] Studies conducted by major industry software
developers indicate that 80% of the problems are caused by 20% of the software. [JONES91]
Therefore, in some cases, only 20% of a system may need reengineering.

Reengineering is only one of several options you have as a maintenance manager in fulfilling
your user’s needs. These options must be weighed against each other. Factors to consider, in
addition to cost, include:

* The added value of reengineering relative to the value of a new system and the value of the
old system.

e Therisk of reengineering relative to the risk of a new development and the risk of doing
nothing.

* Thelife expectancy of the existing system relativeto thetime required to reengineer it and the
time required to redevelop it. [SNEED91]

12.4.2 Reengineering Process

Reengineering involves a number of engineering concepts. How these engineering tasks make
up thereengineering process and rel ate to each other isillustrated on Figure 12-6. These methods
include:

* Reverse engineering. Thisisthe processof examining an existing software system to abstract
itsdesign and fundamental requirements. It isalso the end-to-end process used to understand
the existing software well enough to changeit. Itisthe opposite of forward engineering (the
traditional way software is developed).

e Forward engineering. This is the set of engineering activities that use the products and
artifacts derived from legacy software and new requirements to produce anew target system.

* Restructuring. Thisisthe process of reorganizing or transforming an existing system from
onerepresentation form to another at the samerelative abstraction level, while preserving the
subject software’s external functional behavior. Most commonly applied, restructuring
involves taking (perhaps unstructured) software and adding structure.

* Redocumentation. This is the process of analyzing the software to produce support
documentation in various forms, including users manuals and reformatting the system’s
source code listings.

12-13

Chapter 12 : Software Support GSAM Version 3.0

Other software support engineering concepts not illustrated on this figure include: retargeting,
the process of transforming and hosting (or porting) existing software to a new hardware
configuration; and source code trandl ation, the transformation of source code from onelanguage
to another or from one version of alanguage to another version (e.g., translating COBOL-74 to
COBOL-85). [OLSEM93]

I
i . T H
Requirements | !
(constraints, I : '
objectives, De_?lgn Implementation i
business rules) X |
! |
| Foreward Foreward !
I engineering @ | engineering g | E
)
Reverse Reverse
'« - —— - - _ L engineering | _ _ _ _ _ _ _ _ <Ehaineering | _____ ___
- 4
. —_—— = .

Desigh 1 ______ < - =="Design H
— '
recovery recovery !

—

Re-engineering

R

Re-engineering

(renovation) (renovation)

Restructuring Restructuring Redocumentation,

restructuring

-—

Figure 12-6. Relationship Among Support Engineering Tasks [GLASS92]

Your reengineering strategy can be integrated into your domain engineering approach with
profitable results. This may involve looking at reengineering as atotal migration plan that can
involve a number of incremental steps — rather than as a single event at one point intime. A
comprehensive model of the reengineered system can also be devel oped and maintained while
the implementation of the plan is staggered as resources permit. [For more information see
Feiler’ sReengineering: An Engineering Problem, SEI Special Report, 1992.]

12.5 Logistics Support Analysis (LSA)

It has not been the practice for contractors to perform formal LSAs for software acquisitions.
Even for weapon systems, most L SA isconfined to hardware. A complete, well-rounded approach
to assuring that software is supportable has not been formally developed. In 1991, at the 26th
Annual International Logistics Symposium sponsored by the Society of Logistics Engineers
(SOLE), a paper was presented by A.G. Johnson and T.A. Haden, from the United Kingdom
Ministry of Defense Army Electronics Branch. This paper included a Software Supportability
Checklist, modeled after those used for hardware. It isreproduced in Table 12-1 for the benefit
of program managers and contractors who desire to give additional attention to the L SA of their
software.

12-14

Chapter 12 : Software Support GSAM Version 3.0

SOFTWARE
SUPPORTABILITY DESCRIPTION
FACTOR
Maintainability Reguirement for a Maintenance Task Analysis (MTA)

FTA, FMECA Requirement for Fault Tree Analysis (FTA) and Failure Modes and Effects and
Criticality Analvsis (FMECA) to be performed to functional depth

Defect Rate Requirements to state a contractual target defect rate per lines of code over an
agreed period including confidence limits

Failure Identification Desian to provide features that achieve failure detection and location times

Failure Snapshot Desian to provide features that achieve failure detection and location times

Provision of User/Maintainers software tool kits to aid failure location

_ﬂ Loadina and Savina Data Desian to allow loadina or savina data in specified times

Configuration Identification User/maintainer able to identify the configuration status (version) without
accompanying documentation
9

Exception Handling Design to allow exception handling to preclude failure conditions from aborting
software during operations

m Support Policy Constraints Use Study to include what the software must do and not do

11 | Support Maintenance Policy Support specific maintenance policies and manpower ceilings and skill level
availability to be stated

12 | Software Support and Categories of software support and maintenance to be stated
Maintenance Catedaories
13 || Media Proposed media must: (a) suit the environmental requirements, and (b) be
acceptable as a consumable item

m Simplifv copvina and distribution

Media Marking To allow physical and internal marking; safety critical items to be separately
marked

m Packaaina Media packaaina to be consumable, reusable, and robust
m m Media to require no special precautions and meet Use Study requirements

18 | Storage Media to require no special precautions or facilities and meet Use Study
requirements

m Transportation Media and packaaina to require no special requirements
m User training required to detect failures and invoke exception handling

Training, Support Support training required to detect and locate failures and inoke exception
handlina

_m Publications User and Support publications will be reguired

23 | Definitions The Requirement must include contractually agreed upon definitions of: incident,
fault, failure, defect. reliability, and failure cateaories
Resources Cost estimates must be sought for software maintenance

Test Tools Contractor-owned and maintained software test tools and documentation must be
provided

Test Tool Access Access to test tools to be provided to software support personnel

Incident/Failure Reportina Incident and failure reportina to be available

Table 12-1. Software Supportability Checklist

12-15

Chapter 12 : Software Support GSAM Version 3.0

12.5.1 LSA on the F-22 Program

From the outset, the F-22 program has enhanced and implemented I ntegrated Product Devel opment
(IPD) and Integrated Weapon System M anagement (IWSM). Specifically, the program hasaways
integrated software engineers and logistics personnel throughout all Integrated Product Teams
(IPTs). Inaddition, the Life Cycle Software Support (L CSS) | PT was created to influence software
design for supportability and to build a specification that describes the software support concepts
for the life of the weapon system. Personnel from product centers, support centers, customers,
and contractors work together on the IPTs. Thus, program decisions related to software
development and support arejointly determined. Sinceeach IPT iscomposed of representatives
from all disciplines, lifecycleimpact isalways considered as are plansfor future software support.
Because a software support facility is still some years away, support decisions are analyzed to
determine future impact. LCSS IPT personnel ensure that decision makers are briefed on the
consequences of support decisions.

NOTE: See master’s thesis, Guidelines for Ensuring Software Supportability in Systems
Developed Under the Integrated Weapon Systemm Management Concept, by Johndro
and Butts, Air Force Institute of Technology, December 1993.

Instead of the traditional L SA process, the approach the LCSS IPT used was a combination of
parametric models, anal ogy, expert opinion, and top-down analysis. By analogy, they compared
the overall size of the effort to past fighter aircraft designs. The F-22 will have at |east twice as
much software on board the aircraft as any fighter currently in DoD. Also by analogy, they
initially estimated that the magnitude of average software block change would be approximately
10% of the total source lines-of-code.

The F-22 al so employs datatablesto implement highly volatile functions and reduce the magnitude
of block changes. Key design decisionswere made to move potential areas of change out of the
source code and into thelookup tables. Potential change areas are now isolated to easily modifiable
code blocks instead of locked in algorithms. For example, most Pilot-Vehicle Interface (PVI)
functions have traditionally been hard-coded into the software, but on the F-22, many of these
functions will be implemented using datatables. By expert opinion, the IPT leads in charge of
software development estimated that the use of data tables would reduce the block change size
by about 50%. Once the overall effort was estimated, parametric analyses of each subsystem
provided estimates for schedule and personnel requirements. Three software cost estimation
models (SEER, REVIC, and CostMotio) indicated varying degrees of schedule and personnel
requirements. ThelPT leadsthen selected asingle model to continue atop-down analysis of the
large subsystems.

Software support facility cost estimates were al so based on expert opinion and analogy. Subject
matter experts, such aslab managers and integration and test | eads, suggested space and equipment
requirements based on F-22 development efforts from which equipment cost estimates were
derived. Personnel cost estimates were based on the current annual rates for government and
contractor software development personnel when applied to parametric analysisresults. Similar
data, which had been previously collected from the F-14, F-15, F-16, and F/A-18 programs, were
used for comparison purposes. The comparative data corroborated facility and personnel cost
estimates.

12-16

Chapter 12 : Software Support GSAM Version 3.0

Aninherent difference between hardware support and software support is that hardware support
is based on the finished product, while software support must mimic the development process.
Hardware support must use the tools necessary to repair afinished product, not tools required to
build aone. Software support, on the other hand, must use tools functionally identical to those
used during the development process. To determine F-22 software support requirements, the
LCSSIPT started their LSA program by identifying the tools used to create the software. They
then developed a software supportability database based on MIL-STD-1388A. Although
traditional LSA process was not used to assess software supportability, LSA Record (LSAR)
data items are incorporated in a database. Both software maintai ners and devel opers reviewed
and commented on the initial database design, as defined by the LCSS IPT. To populate the
analysisdatabase, dataare collected from the software devel opment | PTs during each devel opment
phase. The database is segregated by computer software configuration items (CSCls) and by
development cycle phase. Thisdatacollection relationship will continue throughout production
and post-production support. The software supportability database implements the intent of the
L SA process at the highest level to accommodate software support requirements.

The LCSSIPT will generate several guidance documentsfor the F-22 program. Specifically, IPT
personnel will aso prepare and publish aPost-Deployment Software Support Concept Document
(PDSSCD) as an executive summary of the processes, plans, and procedures to be used in post-
deployment support. System Program Office (SPO) personnel will update the F-22 Computer
Resources Life Cycle Management Plan (CRLCMP) to reflect software support decisions
published inthe PDSSCD. Contractor personnel will prepare and deliver a Computer Resources
Integrated Support Document (CRI SD) to define the processes, plans, and proceduresfor software
support. Additionally, contractor personnel will prepare an Integrated Weapons System Support
Facility (IWSSF) development specification to define and itemize the resources needed to
implement the CRISD.

The LCSS IPT takes a very proactive role in the Software Product Evaluation (SPE) process.
Since the SPE process keeps software support personnel closely associated with software
development teams, support personnel are able to influence design and improve supportability.
For example, LCSS IPT and Charles Stark Draper Laboratory personnel developed Document
Evaluation Guidelinesto help evaluate hundreds of software documents generated by the program.
These guidelines provided devel operswith criteriato follow during initial product development.
They also form the basis for document SPEs. The LCSS IPT personnel also train government
and contractor personnel on the SPE process so that documents are prepared according to the
same guidelines against which they will be evaluated. Thisdramatically improvesthefirst-time
approval rate of software documents.

12.6 Continuous Acquisition and Life Cycle
Support (CALYS)

CALS s acollection of standards for developing, storing, and communicating products, parts
specifications, and other engineering technical information electronically. The purposeof CALS
IS to get on-line engineering data and specifications for high-tech equipment in a DoD-wide
database for easy retrieval and updating throughout a weapon system’s life. All new weapons
systems should include a ““delivery-in-place” capability. This is the electronic capability to

12-17

Chapter 12 : Software Support GSAM Version 3.0

deliver on-request all contractually required information. Although the data resides with the
contractor, DoD retains the rights to the data and must be provided access to it on a fee-for-
service basis.

12.7 Managing a PDSS Program

You employ the same tactics for successful management of PDSS as those employed for new-
starts and ongoing software developments. The solutions to your PDSS devel opment problems
are the al so same software engineering practi ces used throughout other phases of the life cycle.
Unfortunately, you are at the mercy of the acquirer and initial developer who may have burdened
your program with problems. Planning and execution of software support must begin during the
concept exploration phase and continue until the system isremoved from theinventory. Thekey
areasthat must be addressed areillustrated in Figure 12-7. These key areas consist of processes,
products, and support systems.

SOFTWARE
SUPPORTABILITY

PROCESSES PRODUCTS SUPPORT

SYSTEMS
PROGRAM SYSTEM DOCUMENTATION SOFTWARE

PERSONNEL FACILITIES
MANAGEMENT

ENGINEERING

DESIGN

CONFIGURATION
MANAGEMENT

SOFTWARE
DEVELOPMENT

SOURCE
CODE

EQUIPMENT
(ASIF)

Figure 12-7. Post-Deployment Software Support Key Considerations

Life cycle support strategies typically span the support spectrum from sole source contractor to
full government organic, with each strategy presenting different advantages and disadvantages
needing evaluation. A high level IPT consisting of the operational user, the Program Executive
Officer (PEO), and the acquisition agent must make the support decision prior to Milestone |I.
Thisfocuses attention on the software support process and allows the acquisition agent to begin
planning for it earlier in the program.

To effectively manage and control software development and to ensure software supportability
requires that we incorporate measurement in the developer’s decision making and reporting
processes. With measurement, we can monitor the development effort, gain early insight into
potential problem areaswhich can negatively impact the PDSStask, and we can ease verification
procedures.

Support processes are the most important element for management, control, and improvement of
software support. The key processesthat must be captured and recorded are program management,
configuration management, systems engineering, and software development. The key products
essential to PDSS are documentation, source code, and a description of the software design and
test procedures. The baseline for PDSS activity is the delivered products from the initial
development. The effectiveness of PDSSis governed by the usability and descriptiveness of the

12-18

Chapter 12 : Software Support GSAM Version 3.0

delivered documentation. Source documents for these essential products are contract Contract
DataRequirementsLists (CDRLS), Contract Lineltem Numbers (CLINSs), and the CRISD. Support
systems include the people, facilities, tools, and equipment needed to perform the maintenance
task.

The following are key management activities to remember for PDSS success:

* Determineyour life cycle support strategy early,

* Remember that software support is actually software redevel opment,

* Ensure adequacy of contractor software development processes during source selection,

* Identify supportability requirements and objectives in system requirements documents and
Statements of Objectives,

e Specify required documentation and verification methods in the appropriate CDRLS,

* Identify necessary software development and support toolsin CRISD, and

e Establish a Computer Resource Working Group (CRWG) IPT.

12.7.1 Computer Resources Integrated Support Document
(CRISD)

The CRISD isthe key document for software support. It definesfacility requirements, specifies
equipment and required support software, and lists the number of required personnel, skills,
required training. It containsinformation crucial to the establishment of the SEE, itsfunctionality,
and limitations. It is amanagement tool that accurately characterizes the SEE’ s evolution over
time.

The CRISD is a product of the software development process. As the pyramid in Figure 12-8
illustrates, the bottom tier, “early analysis and supportability decisions during design,” is the
cornerstone in achieving supportable software. Support requirements and characteristics must
be specified at the beginning of the design process so that supportability features are an integral
part of system development. Thispermitsidentification of support resources asthey are needed.
It also enables the identification and documentation of the software development tools used.
The CRISD isaliving document that reflects the devel opment configuration and test/integration
environments. Thus, the CRISD laysthefoundation for PDSS and isessential in reducing software
life cycle support costs.

12-19

Chapter 12 : Software Support GSAM Version 3.0

Early Analysis and Supportability Decisions
During Design

Figure 12-8. Computer Resources Integrated Support Document (CRISD)

NOTE: See Volume 2, Appendix I for a discussion on the importance of the CRISD and
how it is being implemented on the F-22 Program.

12.8 Addressing Software Support in the RFP

Supportability isone of the most important issuesto addressin the RFP. Y our RFP must require
that offerorsplan for supportability by stipulating that the software be devel oped with asupportable
architecture that anticipates change, uses accepted protocols and interfaces, and has
documentation consistent with the code. This can only be achieved during initial software
development and must be addressed upfront in the development contract. The higher the quality
of the initial system, the easier it will be to support. Therefore, the offeror’s approach to
supportability must be a major source selection criterion.

In 1990, asurvey of over 100 businesses and technical people conducted by the Air Force Scientific
Advisory Board revealed that contractors do not perceive supportability and maintenance as
important factors for winning software development contracts. This study showed that software
contractors believe cost, performance, and schedul e are the Government’s main concern. This
perception by contractors must be changed. The primary vehicle to help institute this change,
especially for your program, will be the emphasis given to supportability in your RFP. [PDSS90]

One method to emphasi ze the importance of supportability isto require pre-award competitive
software exercises (e.g., prototypes and demonstrations). These compute-offs can be followed
by multiple awardsfor design demonstrations. The design demonstrations are based on evolving,
value-added prototypes that ultimately converge into afully supported product at the end of the
initial procurement. To make this acquisition strategy effective, the developing contractor(s)
must be required to support previous, but evolving, versions of the product the sasmeway aPDSS
maintainer would. The prototype developers are required to select design(s) that promulgates a

12-20

Chapter 12 : Software Support GSAM Version 3.0

low-cost, efficient solution with minimal side effects on software maintenance. The subsequent
Engineering and M anufacturing Development (EM D) development contract is awarded to the
most supportable design.

Whether a contractor maintains the software, or it is transitioned to in-house government
mai ntai ners, the maintai ner must have the original developer’ s SEE and other essential toolsfor
proper code maintenance. The following deliverables must be required:

* Datarightsto make and install changes,

e Source code and documentation adequate to understand the code,

* Computer resources (SEE, computers, compilers, etc.) needed to modify the source code and
produce object code,

* Equipment and support software to test the subject code, to diagnose problems, and to test
solutions, enhancements, and modifications,

* Equipment needed to distribute and install the new software,

* A workable system to identify problems, resolve new requirements, and manage the support
workload, and

* Skilled personnel to perform required maintenance tasks. [ALC89]

The way you structure the RFP to acquire and develop your initial software can profoundly
impact the availability and useful ness of the required support environment. Therefore, you must
require that all offerors describe their plans for supportability as part of their proposal submission.
To ensure a prospective offeror’s systems engineering and software development processes
adequately address the supportability of software, it is imperative you carefully evaluate the
offeror’ s software development processes during source selection. To do so, three major areas
must be addressed:

* Software Development Plan (SDP). Require the submission of aSDPwith offerors proposals
that states how they intend to ensure their development process addresses supportability
relative to the systems engineering process. This plan is evaluated during source selection.

e Capability Evaluation.

* Instructions to Offerors (ITO). The ITO and source selection evaluation criteria must
specifically addressthose areas you consider critical processes. Theevaluation criteriashould
describe what is required of the offerors’ proposal and how it will be evaluated. The
Aeronautical Systems Center has developed an RFP template which provides general and
specific guidance on preparing the RFP for software-intensive systems. [You might also
consider requiring that offerors address the software supportability instructions contained in
Volume 2, Appendix S, Software Source Selection as part of their proposal response. In
addition, Appendix S provides a shopping list of RFP statements, definitions of software
supportability metrics, and asample “Instructionsto Offerors’ that addresses supportability.]

12-21

Chapter 12 : Software Support GSAM Version 3.0

12.8.1 Specifying Supportable Software

Acquiring supportabl e software al so requires the specification of software product performance
requirements. The major instruments contained within the RFP areillustrated in Figure 12-9.

OBJECTIVES SPECIFICATION CDRL INTSRUCTIONS MODEL
(SO0) TO OFFERER CONTRACT
(ITO)
REQUIREMENTS
Q SRS/IRS EVALUATION CDRL
— PERFORMANCE CRITERIA
— CHARACTERISTICS SOURCE

CLINS
CODE

VERIFICATION

Figure 12-9. Acquisition Instruments

12.8.1.1 Statement of Objectives (SOO)

The SOO defines an objectivefor efficient, life cycle software support consi stent with total system
requirements. The SOO statesthat software supportability requirements and support characteristics
are to be managed as an integral part of system development.

12.8.1.2 Specification Practices

In accordance with the Perry Memo, your RPF must describe what you want to procure — not
how to design or build it. You can provide top-level system specifications or requirements
documents to satisfy the “what you want.” These specifications can only contain performance
requirements and key system characteristics— they can not contain design solutions or detailed
design requirements. You can describe the methods you intend to use to verify that system
requirements have been achieved. For each performance requirement, a corresponding method
of verification should be provided. Therefore, specify key software supportability characteristics
along with corresponding verification methods in the system specification or requirements
document. You should specify the following characteristics to ensure your software acquisition
is supportable:

e Module size. Module size affects software supportability. Module size [atypical computer
software component (CSC)] should generally not exceed 100 source lines-of-code (SLOC).

* Complexity. Application complexity affects software supportability. One generally accepted
complexity measureis McCabe’' s Cyclomatic Complexity Measure, which should not exceed
10 for agiven module.

* Programming language. The use of widely-accepted, higher order programming languages
to devel op software enhances software supportability.

12-22

Chapter 12 : Software Support GSAM Version 3.0

e Spare memory. Theavailability of installed spare memory improves software supportability.
Spare memory permits the incorporation of enhancements and the correction of latent
deficiencies. Theeffect of spare memory on supportability was cal culated for the E-3 AWACS
wheretwo similar radars were delivered with 9% spare and 34% spare memory, respectively
for the APY -1 and the APY-2. Measurementsrevealed a3to 1 differencein cost and schedule
impact when making the same change to both E-3 radars.

e Spare computer throughput. Theavailability of installed spare throughput affectsthe software
supportability by permitting the incorporation of enhancements and the correction of latent
deficiencies.

e Spare computer system input/output. Theavailability of installed spare input/output affects
software supportability.

e Other parameters. Theseinclude Halstead Metrics, SAIC, Inc.’sQuality Profile Metrics for
Supportable Maintainable Software, the |EEE’s software reliability concepts as they may
apply to specifying a required level of software supportability, and Rome Laboratory’s,
Framework | mplementation Guidebook, RL -TR-94-146, August 1994.

12.8.1.3 Documentation

Because software is unlike any other product, the only way to visualize and understand it is
through its documentation. Without accurate, high-quality documentation, software cannot be
understood. In essence, documentation is the most important aspect of software support.
Documentation delivery requirements specified in CDRL s include:

* Software and I nterface Requirements Specifications,
* Software and Interface Design Descriptions,

e Database Descriptions,

e Software Product Specifications,

e Source Code Listings,

e Test plans/descriptions/reports,

e Software Development Plans,

e Software programming manuals,

e Software users manuals, and

e Software maintenance manuals.

The specific criteriafor government acceptance of software design information should be clearly
specified in the appropriate CDRLs (DD Form 1423) items. This includes the verification
methodology, composition of the verification teams, and quantitative thresholds that must be
met or exceeded. Offerors should be encouraged to provide alternative verification approaches.

12.8.1.4 Life Cycle Software Support Strategies

To ensure the contractor’s process for developing the software addresses information and
documentation management, quality, and verification procedures, typical life cycle support
strategies available for source selection include the following.

12-23

Chapter 12 : Software Support GSAM Version 3.0

* Sole source (original contractor). The original contractor is awarded the software support
contract. The processes, products, and support system are already in place at the contractor’s
facility and typically are the same as those used during the development.

* Competitive (support equipment provided). A competitive contract is awarded and the
processes, products, and support systems are either transferred from the original contractor
facility to the competing contractor or the items are duplicated. The original contractor can
also be a competitor.

* Organic/contractor mix. The Government and the contractor shareresponsibility for software
support. Each agent is assigned a percentage of the software to be supported. Typically the
Government and contractor are collocated. The processes, products, and support system are
relocated to a government support center or the items are duplicated. Manning of the effort
is shared by the Government and either the original contractor or a competitive contractor.

e Organic. The Government assumes responsibility for software CSCls. The processes,
products, and support systems are relocated to a government support center or duplicated.
Support processes are executed by government organic personnel.

12-24

Chapter 12 : Software Support GSAM Version 3.0

12.9 References

[ALC89] Supportable Software Acquisition Guide, First Edition, San Antonio Air Logistics Center, October
1989

[BASSETT95] Bassett, Paul, “Maintenance is a Misnomer,” Software Magazine, December 1995

[BISCHOFF91] Bischoff, Col Ron, as quoted in “Design and Planning Make High-Tech F-22 Easy to
Maintain and Support,” Aviation Week & Space Technology, July 15, 1991

[BOEHM81] Boehm, Barry W., Software Engineering Economics, Prentice-Hall, Inc., Englewood Cliffs,
New Jersey, 1981

[BORKY90] Borky, Col John M., as quoted in “ATF Avionics Met Dem/Val Goals, Providing Data for
Flight Tests,” Aviation Week & Space Technology, September 24, 1990

[GLASS92] Glass, Robert L., Building Quality Software, Prentice Hall, Englewood Cliffs, New Jersey,
1992

[IEEEQQ] Institute of Electrical and Electronic Engineers, Inc., IEEE Standard Glossary of Software
Engineering Technology, |IEEE STD 610.12-1990, New York NY, December 10, 1990

[JONES91] Jones, Capers, Applied Software Measurement: Assuring Productivity and Quality, McGraw-
Hill, Inc., New York, 1991

[OLSEM93] Olsem, Michael R. and Chris Sittenauer, “ Termsin Transition: Reengineering Terminology,”
CrossTalk, Software Technology Support Center, Special Edition, 1993

[PDSS90] “Report of the Ad Hoc Committee on Post-depl oyment Software Support,” USAir Force Scientific
Advisory Board, December 1990

[PERRY 93] Perry, William E., “Don’'t Pour Money Down Rat Holesthat Infest Your Budget,” Government
Computing News, December 6, 1993

[PIERSALL94] Piersall, COL James, “The Importance of Software Support to Army Readiness,” Army
Research, Development, and Acquisition Bulletin, January-February 1994

[PRESSMAN92] Pressman, Roger S., Software Engineering: A Practitioner’s Approach, Third Edition,
McGraw-Hill, Inc., New York, 1992

[SHUMSKAS92] Shumskas, Anthony F., “ Software Risk Mitigation,” G. Gordon Schulmeyer and James
I. McManus, eds., Total Quality Management for Software, Van Nostrand Reinhold, New York, 1992

[SNEED91] Sneed, Harry M., “Economics of Software Reengineering,” Software Maintenance: Research
and Practice, Volume 3, John Wiley and Sons, Ltd., 1991

12-25

	Chapter 12 Software Support
	Contents

