
Part 2: Engineering GSAM Version 3.0

Chapter 12

Software Support

Chapter 12 : Software Support GSAM Version 3.0

12-2

Contents

12.1 Chapter overview ... 12-3
12.2 A Total Life Cycle Approach ... 12-4

12.2.1 Software Support Cost Drivers .. 12-5
12.2.2 Software Support Activities ... 12-6
12.2.3 Software Support Issues ... 12-8
12.2.4 COTS Software Support Issues .. 12-10

12.3 Planning for Support Success .. 12-10
12.3.1 Software Support Cost Estimation ... 12-11

12.4 Software Reengineering ... 12-12
12.4.1 Reengineering Decision .. 12-12
12.4.2 Reengineering Process.. 12-13

12.5 Logistics Support Analysis (LSA) ... 12-14
12.5.1 LSA on the F-22 Program... 12-16

12.6 Continuous Acquisition and Life Cycle Support (CALS) 12-17
12.7 Managing a PDSS Program ... 12-18

12.7.1 Computer Resources Integrated Support Document (CRISD) 12-19
12.8 Addressing Software Support in the RFP ... 12-20

12.8.1 Specifying Supportable Software .. 12-22
12.8.1.1 Statement of Objectives (SOO) .. 12-22
12.8.1.2 Specification Practices.. 12-22
12.8.1.3 Documentation ... 12-23
12.8.1.4 Life Cycle Software Support Strategies 12-23

12.9 References .. 12-25

12-3

Chapter 12 : Software Support GSAM Version 3.0

12.1 Chapter overview

In Operation Desert Storm the intensity of battle coupled with large forces using Information
Age weaponry and communications created the most intense electronic battlefield ever witnessed.
The E-3 Airborne Warning and Control System (AWACS) was an integral part of the battle
serving as the “eye” that tracked all battle space aircraft and directed interceptions while
safeguarding our forces from surprise enemy aerial attack. The overwhelming density of diverse
electronic signals transmitted and received created such a congested environment that the E-3s’
full mission capability was greatly hindered. This E-3 problem had to be quickly corrected and
a dedicated software support team sprung into immediate action. The E-3 radar software was
rapidly revised, flight tested, and on its way to deployed aircraft within 96 hours. This quick
reaction, modification, and change-out during the heat of battle emphasizes the operational
necessity for easily supportable software.

The ability to continuously support our major software-intensive systems is a paramount mission
requirement. Supportability is critical because there is always an inevitable need to correct latent
defects, modify the system to incorporate new requirements, enhance the existing system to add
capability, and alter it to increase performance. The ability to accommodate change is an integral
requirement of major software-intensive systems.

Unfortunately, when we have fielded unsupportable systems, we have often had to expend
considerable time and funds to provide the required support or we have had to abandon them
altogether. We learned that it is far more cost-effective to address supportability as we define
requirements, design the system, and plan for its operational life. In this chapter you will learn
how to reduce the risk of acquiring, managing, and maintaining software-intensive systems by
ensuring that they are modifiable, expandable, flexible, interoperable, and portable — i.e.,
supportable.

Software support, often called redevelopment, addresses the maintenance life cycle phase where
major software costs occur. Support planning addresses the development acquisition and entails
request for proposal (RFP) development that provides for delivery of full documentation, data
rights, and delivery of the software engineering environment (SEE) used by the developer.

When tasked with maintenance responsibility of legacy software which has become technologically
obsolete, has deteriorated through years of changes, or must be changed anyway to work with
new hardware or other software, it may be cost effective to reengineer it. This involves systematic
evaluation and alteration of an existing system to reconstitute it (or its components) into a new
form or converting it to Ada to perform within a new operational environment, to improve its
performance, or to reduce maintenance costs. This process can combine several subprocesses,
such as reverse engineering, restructuring, redocumentation, forward engineering, or retargeting.

12-4

Chapter 12 : Software Support GSAM Version 3.0

12.2 A Total Life Cycle Approach

With the exception of the B-2 bomber, DoD will not be purchasing any additional bomber aircraft
in the foreseeable future. Procurements of new, advanced fighter aircraft [i.e., the F-22 or Joint
Advanced Strike Technology (JAST)] will not occur until the early 2000s. Thus, we have to rely
on existing aircraft platforms for several years. The recent modification to the B-1B Lancer is a
prime example of this. The B-1B is being upgraded to a conventional munitions capability. The
bulk of the effort focuses on the enhancement and modification of the B-1B’s offensive avionics
software component. These trends indicate that the future capability of our major software-
intensive systems is inexorably dependent on our ability to cost-effectively maintain them.

Software maintenance is really a poor name for the post-deployment software support (PDSS)
activity. In other engineering contexts, maintenance implies repairing broken or worn-out parts.
But software does not break — nor does it wear out. It is for this reason that PDSS is often called
the redevelopment phase. As defined by the Institute of Electrical and Electronics Engineers
(IEEE), software maintenance is

The process of modifying a software system or component after delivery to correct faults, improve
performance or other attributes, or adapt to a changed environment. [IEEE90]

Software is alive! Whether it is in production or not, it is always in the process of becoming,
evolving, changing. Research on software maintenance shows that user requirements impacting
software account for 41% of post-deployment support costs, while hardware changes account
for 10%. [BASSETT95] That is to say, over half of all software support is driven by changes in
the system’s external environment. Because software must evolve in response to its external
environment, it is more like a living thing than an inanimate object that only needs to be designed
once, and thereafter, infrequently repaired or maintained. With software, development (and
redevelopment) is the norm in response to external changes. Therefore, designing for maintenance
must be incorporated and unified with development.

Software support is different from but includes the same activities as development. It is different
because the developer has no existing system from which to work; whereas, the maintainer must
be able to read and understand already existing code and solve problems within an existing
framework which constrains the solution set. The developer has no product knowledge because
the product does not yet exist. The maintainer must have complete product knowledge to do his
job well. Support is the same as development because the maintainer must perform the same
tasks as the developer, such as define and analyze user requirements, design a solution (within
the constraints of the existing solution), convert that design into code, test the revised solution,
and update documentation to reflect changes. Figure 12-1 illustrates how support tasks correspond
to and mirror the development process. [GLASS92]

12-5

Chapter 12 : Software Support GSAM Version 3.0

Figure 12-1. Support Tasks Superimposed on the Software Development Phase

12.2.1 Software Support Cost Drivers

The demand for delivering high quality software support in time has never been greater. However,
software support is by far the biggest life cycle cost driver and the most significant source of
system risk for all major DoD software-intensive acquisitions. Although software support occurs
during the post-deployment phase, it must be planned for upfront during requirements definition
and design. It must also be budgeted for and continuously addressed throughout the system’s
life. Developing supportable software is one of the most important criteria for software success.
All the causes of cost and schedule overruns, performance shortfalls, and for programs being
thrown off stride are amplified once the system is in the hands of the maintainer. Therefore, the
Software Crisis has primarily been the Maintenance Crisis. According to numerous DoD and
industry studies, the typical cost to maintain a software product is from 60% to 80% of total life
cycle costs. Your challenge is to minimize the cost of software maintenance, and to avoid being
at the heart of the Crisis. These costs are depicted on Figure 12-2.

Testing and
debugging

(30%)

Updating
documentation (5%)

Defining
and

understanding
change
(15%)

Implementing
the change

(20%)

Tracing
logic (25%)

C
he

ck
ou

t

Implementation

D
es

ig
n:

un
de

si
gn

, r
ed

es
ig

n

Requirements

Understanding
the product

(30%)

Reviewing
documentation

(5%)

12-6

Chapter 12 : Software Support GSAM Version 3.0

Figure 12-2. Life Cycle Support Costs

These cost increases during the software maintenance phase have historically been caused by
dram atic decreases in productivity (measured in lines-of-code (LOC)/manmonths or function
(feature) points/manmonths.) Productivity drops of 40:1 have been reported during software
support. [BOEHM81] For example, what cost $150/LOC to develop might cost $1,000/LOC to
maintain. This significant increase in system cost demands that basic decisions about how the
software will be maintained be made during the concept and design phases. Easy access to the
software and an inexpensive medium for distributing enhancements can have significant effects
on life cycle costs. A well thought out concept of operations includes hardware provisions for
spare connectors, card slots, and memory capacity to facilitate interoperability to new software
systems as they are fielded and integrated into the defense inventory. [PIERSALL94] A flexible,
modular architecture is also essential for ensuring understandability, modifiability, interoperability,
reusability, expandability, and portability — all prerequisites for supportable software.

12.2.2 Software Support Activities

Figure 12-3 is based on a study of 487 commercial software development organizations and
illustrates how software support changes are distributed among support tasks. Most software
support dollars are spent on defining, designing, and testing changes. After these activities are
performed (whether there is one unit or hundreds of units in the field), subsequent increases in
cost are marginal. Support activities include:

• Interacting with users to determine what changes or corrections are needed,
• Reading existing code to understand how it works,
• Changing existing code to make it perform differently,
• Testing the code to make sure it performs both old and new functions correctly, and
• Delivering the new version with sufficiently revised documentation to support the user and

the product.

Maintenance

49%

Va lidation
21%

Requirements/

Design
13%

Implementation
9%

Other

8%

Development
20%

Maintenance
80%

Data Processing
Environments

Large, Complex Systems
Environments

12-7

Chapter 12 : Software Support GSAM Version 3.0

Figure 12-3. Causes of Software Changes [PIERSALL94]

During operational testing, supportability evaluations concentrate on software code, supporting
documentation and implementation, computer support resources, and life cycle process planning.
Due to its impact on software support, spare computing capacity is also examined. The four
areas the Air Force Operational Test and Evaluation Center (AFOTEC) evaluates for supportability
are illustrated in Figure 12-4. For example, maintainability evaluations consist of questionnaires
that concentrate on the specific characteristics of a maintainable system, such as consistency,
modularity, and traceability. Software supportability is evaluated by the developer when the
documentation and source code are initially baselined (usually during initial integration test and
evaluation) and then periodically until the completion of software development. The information
gained during integration testing helps the developer build more maintainable software.

Enhancement
50%

Maintenance
21%

Refinement
25%

Other
4%

Threat - - - Doctrine - - - Technology

Problem Reports

Software
Life Cycle
Process

Spare
Computing
Capacity

Maintainabilty Computer
Support

Resources

SOFTWARE
SUPPORTABILITY

– Project
Management

– Configuration
Management

– Timing

– Sizing
– Documentation
– Source Listings
– Implementation

– Personnel
– Equipment
– Facilities

Figure 12-4. AFOTEC Software Supportability Evaluation Areas

12-8

Chapter 12 : Software Support GSAM Version 3.0

12.2.3 Software Support Issues

In theory, software never wears out! It has none of the physical properties found in hardware
which the forces of Nature and the operational environment can play on to cause physical systems
to decline in performance. When pieces of hardware begin their life span, they often have a high
failure rate (defects per unit time) because of problems created during manufacturing. Those
pieces that survive the “infant mortality” period usually have lower failure rates (often for many
years) until components begin to wear out. At this point, the failure rate begins to climb again.
This trend, called the “bathtub curve” by hardware engineers, is true for all hardware systems —
whether an automobile, a radio, or a computer.

While software does not wear out in the physical sense, it does deteriorate! There are some
interesting similarities and differences to be seen when the software failure rate is superimposed
on the bathtub curve. Like hardware, new software usually has a fairly high failure rate until the
bugs are worked out. At which point failures drop to a very low level. Theoretically, software
should stay at that low level indefinitely because it has no tangible components upon which the
forces of the physical environment can play. However, after software enters its operational life
(during PDSS), it undergoes changes to correct latent defects, to adapt to changing user
requirements, or to improve performance. These changes make the software failure rate curve
steadily begin an upward journey. Hardware deteriorates for lack of maintenance, whereas software
deteriorates because of maintenance! [GLASS92] By making changes, software maintainers
often inadvertently introduce “side-effects” causing the defect rate to rise, as illustrated in Figure
12-5.

Figure 12-5. Bathtub Curves for Hardware and Software

Although side-effects can be quite complex, most are caused by one thing — there are no spare
parts for software! When software fails the part causing the failure cannot simply be replaced
with a spare. When software fails, from defects inserted during maintenance, often the only way
to correct for the cause of failure is through design modification. Every time the design is modified

12-9

Chapter 12 : Software Support GSAM Version 3.0

it weakens the original structure (or how the modules work internally and with each other) and
eventually the software begins to fall apart. Undisciplined maintenance (or that performed in the
field under stressed conditions) frequently compounds the problem. Maintainers, struggling
against time to make corrections, modifications, or adaptations to new requirements, often
compound the defects created by the last generation of maintainers. In the rush to get the product
to impatient users, they take short cuts — exacerbating the software’s deterioration. Problems
arise when there is a failure to modify the design when patches are made (causing the design and
code to be out of synch). Problems also stem from a failure to update documentation or a failure
to use modern concepts of design and programming in the initial development.

Most of the problems associated with software support can be traced directly back to deficiencies
in the way the original software product was planned, managed, and designed. Lack of sound
software engineering discipline, control, and attention to the design of modular software
architectures during development translates into software support problems resulting in excessive
maintenance costs. Some classic software support issues include:

• Lack of requirements traceability;
• The evolution of software versions or releases that are difficult or impossible to trace [the

evolution of changes that are not documented];
• Unavailability of the software development toolset (compilers, loaders, etc can have impacts;
• Impossible to understand code [software understandability usually increases as the number

of software modules increases];
• Documentation that is nonexistent or of such poor quality that it is useless [documentation

must be understandable and consistent with the source code to be of value]; and
• Inflexible software not designed to accommodate change [unless the architecture allows for

change, modifications to the software are difficult and defect-prone]. [PRESSMAN92]

This last point is, perhaps, the most critical deficiency. The software architecture should carefully
address abstraction, encapsulation, and information hiding to minimize dependencies. By
separating computational and operational details from interface calls, and by maximizing use of
object-oriented design, the software can be easily modified. Modifications can occur during
development and during post-deployment operation with less risk of introducing unwanted side
effects.

Many factors play in the supportability equation. An undisciplined, poorly managed development
process where design, coding, and testing were conducted with carelessness negatively impact
the support task. Design characteristics that affect software supportability include:

• Design complexity (including related attributes of software size, structure, and
interrelationships);

• Stability and flexibility of the design itself;
• Adequacy of documentation to support PDSS;
• Completeness of the software development effort; and
• Extent and implementation of configuration management practices for both operational and

support software. [SHUMSKAS92]

12-10

Chapter 12 : Software Support GSAM Version 3.0

Other factors within the development environment that impact software supportability include:

• Availability of qualified software personnel,
• System structure understandability,
• Ease of system handling,
• Use of standardized programming languages,
• Documentation structure standardization,
• Test case availability,
• Built-in debugging mechanisms,
• Delivery of the original development SEE to the maintenance organization, and
• Availability of appropriate computer hardware to conduct maintenance activities.

[PRESSMAN92]

12.2.4 COTS Software Support Issues

Software support includes support of government-developed software, contractor-developed
software, and commercial-off-the-shelf (COTS) software. Issues to consider when supporting
COTS software include:

• The acquisition agent must acquire appropriate documentation and data rights, licensing,
and subscription services (such as options to purchase or escrow proprietary information)
which allows the Government to support the software if contracted support becomes unfeasible.

• The software support activity (SSA) must maintain appropriate licensing and subscription
services (vendor field change orders and software releases) throughout the life of the system.

• COTS resources must not be altered so as to preclude contractor logistics support or void
licensing or subscription services.

• The supporting command must provide logistics support and contract for subscription services
required to update and maintain COTS assets. It must also evaluate operational and logistic
impacts of change due to subscription-related hardware and software upgrades.

• The operating command must provide a technical review of proposed changes during upgrades
and changes to COTS assets. It is responsible for evaluating effectiveness and mission impact
of changes due to subscription-related software upgrades.

12.3 Planning for Support Success

In recent years, early planning for software support has become a main DoD acquisition priority.
Learning from costly past mistakes, the early F-22 planners wanted to make their weapon system
a “maintenance man’s dream,” according to Colonel John Borky, former director of ATF Avionics.
[BORKY90] Colonel Ron Bischoff, Air Logistics Center (ALC) system program manager for
the F-22, remarked, “We are practicing [with F-22 support and maintenance design] what we
always said we were going to do, but never did...[Before] it was a build it, then fix it, way of
doing business.” [BISCHOFF91] In the past, the system program manager responsible for
supporting the aircraft was not assigned until late in the design process. Support problems were
not addressed until after an aircraft was deployed and maintenance problems occurred. F-22

12-11

Chapter 12 : Software Support GSAM Version 3.0

planners specified support requirements early, which then became part of the RFP. Colonel
Bischoff explained that planning for support success was accomplished by making it a source
selection criterion that support issues be addressed during the design stage.

Colonel Bischoff remarked that writing and maintaining software for the F-22 will be a much
larger task than for any other aircraft in history. He explained, “The F-22 leads DoD’s list of the
most complex software projects, with a projected 7 million lines-of-code.” [BISCHOFF91] F-22
planners enforced consistency and completeness by mandating the use of Ada for all F-22 software
systems. By using Ada, all F-22 software engineers are forced to use common terminology, from
ground support systems to operational flight programs. Bischoff claims, “That was a major step
forward. Ada makes the software much more supportable because it is written in much clearer
text. Lack of documentation killed us in the past.” F-22 planners also enforced the use of a
common Ada software engineering environment that provides uniform development tools for all
the software development team members.

To augment F-22 support success, Air Force and contractor personnel will work together as
integrated product teams (IPTs) to maintain F-22 software. To plan for this requirement, the
ALC F-22 system program office (SPO) has ALC software personnel involved shoulder-to-
shoulder with contractors so they will understand what is being done and why. Colonel Bischoff
boasted, “We’re already planning for the first update to the operational flight program within a
year or two after the first F-22 rolls off the production line!” [BISCHOFF91]

As discussed above, decreases in productivity during PDSS can be tied to increases in software
complexity the longer it is in the support phase. The more modifications made to the software
(especially to a poorly engineered product), the more complex it becomes with corresponding
increases in the introduction of defects. These exponential increases in effort (and cost) are
mainly the product of poorly engineered software. [PRESSMAN92] Therefore, planning for
supportability upfront is a major determinant of software development success. Software not
developed with maintenance in mind can end up so poorly designed and documented that total
redevelopment is actually cheaper than maintaining the original code. With today’s shrinking
defense dollars, failure to make software maintenance a design priority would not only be poor
management on your part, but could very well result in an inability to support your product.

12.3.1 Software Support Cost Estimation

The variety and undefined scope of future changes throughout the software life cycle make
estimating support costs one of the most difficult — yet most important activities to consider due
to its impact on the DoD budget. Most software estimating models estimate software support
costs; however, the types of activities and the costs included in their estimates vary significantly
from model to model. Most parametrically-based software support estimating models provide a
top-level approximation of sustaining engineering and support requirements. They do not produce
estimates that can be reliably used alone as the basis for a software support budget or similar
purpose. Once software has been transferred into a support environment, changes to the software
(especially major changes or additions to basic software functionality) must be estimated using
software models calibrated to the redevelopment environment.

12-12

Chapter 12 : Software Support GSAM Version 3.0

12.4 Software Reengineering

The concept of reengineering is relatively new within the software development community.
The motivation behind reengineering is to get a handle on the ever-growing software maintenance
burden. The rapid evolution of software and hardware technology over the past 20 years has left
DoD with a legacy of millions of lines of failure-prone code, written in a conglomeration of
languages, running on a hodgepodge of incompatible hardware.

“Reengineering” is defined as the examination and alteration of a software system to reconstitute
and re-implement it in a new form. The reengineering process involves recovering the design
from an existing application and using that information to reconstitute it to improve its quality
and decrease maintenance costs. While reengineering re-implements existing system functions
in a better, more efficient manner, new or improved functions are often also added.
[PRESSMAN92]

12.4.1 Reengineering Decision

Reengineering of old, worn-out or obsolete code is often economically justified. The lengthy
DoD acquisition process often takes a decade or more for large software-intensive systems to
come on line. By industry standards, military software is often obsolete before it enters the field,
at which point a 20-year operational life usually lies ahead. The cost of maintaining software
over its extended life can be from two to 10 times as much as the cost to initially develop it. The
decision to reengineer software is often one based on the premise to “pay now or pay much more
later.” [PRESSMAN92] There are basically three situations when reengineering is beneficial.
These include:

• When the existing system has become technologically obsolete and must be replaced;
• When the existing system has deteriorated to the point where it has severe technical problems;

and
• When it might be expedient to upgrade the existing system. [SNEED91]

You may choose to reengineer if you reach the conclusion that it is better to pay now, rather than
waiting to pay-much-more-later. “Paying now” is what Perry calls avoiding the rathole syndrome.
He defines a rathole as the dark place where software maintainers throw their money with no
possibility of return on investment. He equates the legacy software rathole with the old car
rathole. In the short-term, it is cheaper to fix your old car than it is to buy a new one. But over
an extended period, the out-of-pocket expense for parts and labor to patch your old clunker will
cost you more without increasing its resale value than investing in a new car. He also explains
that software maintenance ratholes are like ratholes in the woods. Once you plug one up, the rat
digs another. [PERRY93] Reengineering, when cost effective, can provide you with a way to
plug up all your ratholes and have a new system with all the bells and whistles your user desires.
It may well be the long-term, low-cost solution to your software maintenance problems. The
reasons to reengineer include:

12-13

Chapter 12 : Software Support GSAM Version 3.0

• To reduce maintenance costs,
• To decrease defect rate,
• To convert to a better language or hardware platform,
• To lengthen the life-span, and
• To enable changes in the user’s environment.

Another reason to reengineer is often based on the logical migration of the system. Since the
system has to be dramatically changed anyway, it might as well be upgraded to more current
technology. Your reengineering decision must be based on a thorough feasibility analysis of the
costs, benefits, and risks involved in continued patching (if possible) versus redevelopment
(starting from scratch) versus reengineering. This analysis is based on a calculation of the target
system’s expected lifetime and the comparison of reengineering costs with the costs of a new
development. A rule of thumb is, reengineering is a viable alternative when the cost to reengineer
is not more than 50% of the cost to redevelop. It may also be determined that it is too expensive
to reengineer the entire system. [SNEED91] Studies conducted by major industry software
developers indicate that 80% of the problems are caused by 20% of the software. [JONES91]
Therefore, in some cases, only 20% of a system may need reengineering.

Reengineering is only one of several options you have as a maintenance manager in fulfilling
your user’s needs. These options must be weighed against each other. Factors to consider, in
addition to cost, include:

• The added value of reengineering relative to the value of a new system and the value of the
old system.

• The risk of reengineering relative to the risk of a new development and the risk of doing
nothing.

• The life expectancy of the existing system relative to the time required to reengineer it and the
time required to redevelop it. [SNEED91]

12.4.2 Reengineering Process

Reengineering involves a number of engineering concepts. How these engineering tasks make
up the reengineering process and relate to each other is illustrated on Figure 12-6. These methods
include:

• Reverse engineering. This is the process of examining an existing software system to abstract
its design and fundamental requirements. It is also the end-to-end process used to understand
the existing software well enough to change it. It is the opposite of forward engineering (the
traditional way software is developed).

• Forward engineering. This is the set of engineering activities that use the products and
artifacts derived from legacy software and new requirements to produce a new target system.

• Restructuring. This is the process of reorganizing or transforming an existing system from
one representation form to another at the same relative abstraction level, while preserving the
subject software’s external functional behavior. Most commonly applied, restructuring
involves taking (perhaps unstructured) software and adding structure.

• Redocumentation. This is the process of analyzing the software to produce support
documentation in various forms, including users’ manuals and reformatting the system’s
source code listings.

12-14

Chapter 12 : Software Support GSAM Version 3.0

Other software support engineering concepts not illustrated on this figure include: retargeting,
the process of transforming and hosting (or porting) existing software to a new hardware
configuration; and source code translation, the transformation of source code from one language
to another or from one version of a language to another version (e.g., translating COBOL-74 to
COBOL-85). [OLSEM93]

Requirements
(constraints,
objectives,

business rules)

Re-engineering
(renovation)

Foreward
engineering

Reverse
engineering

Design
recovery

Restructuring Restructuring

Foreward
engineering

Reverse
engineering

Redocumentation,
restructuring

Design
recovery

Re-engineering
(renovation)

ImplementationDesign

Figure 12-6. Relationship Among Support Engineering Tasks [GLASS92]

Your reengineering strategy can be integrated into your domain engineering approach with
profitable results. This may involve looking at reengineering as a total migration plan that can
involve a number of incremental steps — rather than as a single event at one point in time. A
comprehensive model of the reengineered system can also be developed and maintained while
the implementation of the plan is staggered as resources permit. [For more information see
Feiler’s Reengineering: An Engineering Problem, SEI Special Report, 1992.]

12.5 Logistics Support Analysis (LSA)

It has not been the practice for contractors to perform formal LSAs for software acquisitions.
Even for weapon systems, most LSA is confined to hardware. A complete, well-rounded approach
to assuring that software is supportable has not been formally developed. In 1991, at the 26th
Annual International Logistics Symposium sponsored by the Society of Logistics Engineers
(SOLE), a paper was presented by A.G. Johnson and T.A. Haden, from the United Kingdom
Ministry of Defense Army Electronics Branch. This paper included a Software Supportability
Checklist, modeled after those used for hardware. It is reproduced in Table 12-1 for the benefit
of program managers and contractors who desire to give additional attention to the LSA of their
software.

12-15

Chapter 12 : Software Support GSAM Version 3.0

Table 12-1. Software Supportability Checklist

SOFTWARE
SUPPORTABILITY

FACTOR
DESCRIPTION

1 Maintainability Requirement for a Maintenance Task Analysis (MTA)

2 FTA, FMECA Requirement for Fault Tree Analysis (FTA) and Failure Modes and Effects and
Criticality Analysis (FMECA) to be performed to functional depth

3 Defect Rate Requirements to state a contractual target defect rate per lines of code over an
agreed period including confidence limits

4 Failure Identification Design to provide features that achieve failure detection and location times

5 Failure Snapshot Design to provide features that achieve failure detection and location times

6 Tool Kit Provision of User/Maintainers software tool kits to aid failure location

7 Loading and Saving Data Design to allow loading or saving data in specified times

8 Configuration Identification User/maintainer able to identify the configuration status (version) without
accompanying documentation

9 Exception Handling Design to allow exception handling to preclude failure conditions from aborting
software during operations

10 Support Policy Constraints Use Study to include what the software must do and not do

11 Support Maintenance Policy Support specific maintenance policies and manpower ceilings and skill level
availability to be stated

12 Software Support and
Maintenance Categories

Categories of software support and maintenance to be stated

13 Media Proposed media must: (a) suit the environmental requirements, and (b) be
acceptable as a consumable item

14 Media Copying Simplify copying and distribution

15 Media Marking To allow physical and internal marking; safety critical items to be separately
marked

16 Packaging Media packaging to be consumable, reusable, and robust

17 Handling Media to require no special precautions and meet Use Study requirements

18 Storage Media to require no special precautions or facilities and meet Use Study
requirements

19 Transportation Media and packaging to require no special requirements

20 Training, User User training required to detect failures and invoke exception handling

21 Training, Support Support training required to detect and locate failures and inoke exception
handling

22 Publications User and Support publications will be required

23 Definitions The Requirement must include contractually agreed upon definitions of: incident,
fault, failure, defect, reliability, and failure categories

24 Resources Cost estimates must be sought for software maintenance

25 Test Tools Contractor-owned and maintained software test tools and documentation must be
provided

26 Test Tool Access Access to test tools to be provided to software support personnel

27 Incident/Failure Reporting Incident and failure reporting to be available

12-16

Chapter 12 : Software Support GSAM Version 3.0

12.5.1 LSA on the F-22 Program

From the outset, the F-22 program has enhanced and implemented Integrated Product Development
(IPD) and Integrated Weapon System Management (IWSM). Specifically, the program has always
integrated software engineers and logistics personnel throughout all Integrated Product Teams
(IPTs). In addition, the Life Cycle Software Support (LCSS) IPT was created to influence software
design for supportability and to build a specification that describes the software support concepts
for the life of the weapon system. Personnel from product centers, support centers, customers,
and contractors work together on the IPTs. Thus, program decisions related to software
development and support are jointly determined. Since each IPT is composed of representatives
from all disciplines, life cycle impact is always considered as are plans for future software support.
Because a software support facility is still some years away, support decisions are analyzed to
determine future impact. LCSS IPT personnel ensure that decision makers are briefed on the
consequences of support decisions.

NOTE: See master’s thesis, Guidelines for Ensuring Software Supportability in Systems
Developed Under the Integrated Weapon System Management Concept, by Johndro
and Butts, Air Force Institute of Technology, December 1993.

Instead of the traditional LSA process, the approach the LCSS IPT used was a combination of
parametric models, analogy, expert opinion, and top-down analysis. By analogy, they compared
the overall size of the effort to past fighter aircraft designs. The F-22 will have at least twice as
much software on board the aircraft as any fighter currently in DoD. Also by analogy, they
initially estimated that the magnitude of average software block change would be approximately
10% of the total source lines-of-code.

The F-22 also employs data tables to implement highly volatile functions and reduce the magnitude
of block changes. Key design decisions were made to move potential areas of change out of the
source code and into the lookup tables. Potential change areas are now isolated to easily modifiable
code blocks instead of locked in algorithms. For example, most Pilot-Vehicle Interface (PVI)
functions have traditionally been hard-coded into the software, but on the F-22, many of these
functions will be implemented using data tables. By expert opinion, the IPT leads in charge of
software development estimated that the use of data tables would reduce the block change size
by about 50%. Once the overall effort was estimated, parametric analyses of each subsystem
provided estimates for schedule and personnel requirements. Three software cost estimation
models (SEER, REVIC, and CostMotio) indicated varying degrees of schedule and personnel
requirements. The IPT leads then selected a single model to continue a top-down analysis of the
large subsystems.

Software support facility cost estimates were also based on expert opinion and analogy. Subject
matter experts, such as lab managers and integration and test leads, suggested space and equipment
requirements based on F-22 development efforts from which equipment cost estimates were
derived. Personnel cost estimates were based on the current annual rates for government and
contractor software development personnel when applied to parametric analysis results. Similar
data, which had been previously collected from the F-14, F-15, F-16, and F/A-18 programs, were
used for comparison purposes. The comparative data corroborated facility and personnel cost
estimates.

12-17

Chapter 12 : Software Support GSAM Version 3.0

An inherent difference between hardware support and software support is that hardware support
is based on the finished product, while software support must mimic the development process.
Hardware support must use the tools necessary to repair a finished product, not tools required to
build a one. Software support, on the other hand, must use tools functionally identical to those
used during the development process. To determine F-22 software support requirements, the
LCSS IPT started their LSA program by identifying the tools used to create the software. They
then developed a software supportability database based on MIL-STD-1388A. Although
traditional LSA process was not used to assess software supportability, LSA Record (LSAR)
data items are incorporated in a database. Both software maintainers and developers reviewed
and commented on the initial database design, as defined by the LCSS IPT. To populate the
analysis database, data are collected from the software development IPTs during each development
phase. The database is segregated by computer software configuration items (CSCIs) and by
development cycle phase. This data collection relationship will continue throughout production
and post-production support. The software supportability database implements the intent of the
LSA process at the highest level to accommodate software support requirements.

The LCSS IPT will generate several guidance documents for the F-22 program. Specifically, IPT
personnel will also prepare and publish a Post-Deployment Software Support Concept Document
(PDSSCD) as an executive summary of the processes, plans, and procedures to be used in post-
deployment support. System Program Office (SPO) personnel will update the F-22 Computer
Resources Life Cycle Management Plan (CRLCMP) to reflect software support decisions
published in the PDSSCD. Contractor personnel will prepare and deliver a Computer Resources
Integrated Support Document (CRISD) to define the processes, plans, and procedures for software
support. Additionally, contractor personnel will prepare an Integrated Weapons System Support
Facility (IWSSF) development specification to define and itemize the resources needed to
implement the CRISD.

The LCSS IPT takes a very proactive role in the Software Product Evaluation (SPE) process.
Since the SPE process keeps software support personnel closely associated with software
development teams, support personnel are able to influence design and improve supportability.
For example, LCSS IPT and Charles Stark Draper Laboratory personnel developed Document
Evaluation Guidelines to help evaluate hundreds of software documents generated by the program.
These guidelines provided developers with criteria to follow during initial product development.
They also form the basis for document SPEs. The LCSS IPT personnel also train government
and contractor personnel on the SPE process so that documents are prepared according to the
same guidelines against which they will be evaluated. This dramatically improves the first-time
approval rate of software documents.

12.6 Continuous Acquisition and Life Cycle
Support (CALS)

CALS is a collection of standards for developing, storing, and communicating products, parts
specifications, and other engineering technical information electronically. The purpose of CALS
is to get on-line engineering data and specifications for high-tech equipment in a DoD-wide
database for easy retrieval and updating throughout a weapon system’s life. All new weapons
systems should include a “delivery-in-place” capability. This is the electronic capability to

12-18

Chapter 12 : Software Support GSAM Version 3.0

deliver on-request all contractually required information. Although the data resides with the
contractor, DoD retains the rights to the data and must be provided access to it on a fee-for-
service basis.

12.7 Managing a PDSS Program

You employ the same tactics for successful management of PDSS as those employed for new-
starts and ongoing software developments. The solutions to your PDSS development problems
are the also same software engineering practices used throughout other phases of the life cycle.
Unfortunately, you are at the mercy of the acquirer and initial developer who may have burdened
your program with problems. Planning and execution of software support must begin during the
concept exploration phase and continue until the system is removed from the inventory. The key
areas that must be addressed are illustrated in Figure 12-7. These key areas consist of processes,
products, and support systems.

CONFIGURATION
MANAGEMENT

PROGRAM
MANAGEMENT

SOFTWARE
DEVELOPMENT

SYSTEM
ENGINEERING

PROCESSES

SOURCE
CODE

DOCUMENTATION SOFTWARE
DESIGN

PRODUCTS

EQUIPMENT
(ASIF)

PERSONNEL FACILITIES

SUPPORT
SYSTEMS

SOFTWARE
SUPPORTABILITY

Figure 12-7. Post-Deployment Software Support Key Considerations

Life cycle support strategies typically span the support spectrum from sole source contractor to
full government organic, with each strategy presenting different advantages and disadvantages
needing evaluation. A high level IPT consisting of the operational user, the Program Executive
Officer (PEO), and the acquisition agent must make the support decision prior to Milestone I.
This focuses attention on the software support process and allows the acquisition agent to begin
planning for it earlier in the program.

To effectively manage and control software development and to ensure software supportability
requires that we incorporate measurement in the developer’s decision making and reporting
processes. With measurement, we can monitor the development effort, gain early insight into
potential problem areas which can negatively impact the PDSS task, and we can ease verification
procedures.

Support processes are the most important element for management, control, and improvement of
software support. The key processes that must be captured and recorded are program management,
configuration management, systems engineering, and software development. The key products
essential to PDSS are documentation, source code, and a description of the software design and
test procedures. The baseline for PDSS activity is the delivered products from the initial
development. The effectiveness of PDSS is governed by the usability and descriptiveness of the

12-19

Chapter 12 : Software Support GSAM Version 3.0

delivered documentation. Source documents for these essential products are contract Contract
Data Requirements Lists (CDRLs), Contract Line Item Numbers (CLINs), and the CRISD. Support
systems include the people, facilities, tools, and equipment needed to perform the maintenance
task.

The following are key management activities to remember for PDSS success:

• Determine your life cycle support strategy early,
• Remember that software support is actually software redevelopment,
• Ensure adequacy of contractor software development processes during source selection,
• Identify supportability requirements and objectives in system requirements documents and

Statements of Objectives,
• Specify required documentation and verification methods in the appropriate CDRLs,
• Identify necessary software development and support tools in CRISD, and
• Establish a Computer Resource Working Group (CRWG) IPT.

12.7.1 Computer Resources Integrated Support Document

(CRISD)

The CRISD is the key document for software support. It defines facility requirements, specifies
equipment and required support software, and lists the number of required personnel, skills,
required training. It contains information crucial to the establishment of the SEE, its functionality,
and limitations. It is a management tool that accurately characterizes the SEE’s evolution over
time.

The CRISD is a product of the software development process. As the pyramid in Figure 12-8
illustrates, the bottom tier, “early analysis and supportability decisions during design,” is the
cornerstone in achieving supportable software. Support requirements and characteristics must
be specified at the beginning of the design process so that supportability features are an integral
part of system development. This permits identification of support resources as they are needed.
It also enables the identification and documentation of the software development tools used.
The CRISD is a living document that reflects the development configuration and test/integration
environments. Thus, the CRISD lays the foundation for PDSS and is essential in reducing software
life cycle support costs.

12-20

Chapter 12 : Software Support GSAM Version 3.0

Figure 12-8. Computer Resources Integrated Support Document (CRISD)

NOTE: See Volume 2, Appendix I for a discussion on the importance of the CRISD and
how it is being implemented on the F-22 Program.

12.8 Addressing Software Support in the RFP

Supportability is one of the most important issues to address in the RFP. Your RFP must require
that offerors plan for supportability by stipulating that the software be developed with a supportable
architecture that anticipates change, uses accepted protocols and interfaces, and has
documentation consistent with the code. This can only be achieved during initial software
development and must be addressed upfront in the development contract. The higher the quality
of the initial system, the easier it will be to support. Therefore, the offeror’s approach to
supportability must be a major source selection criterion.

In 1990, a survey of over 100 businesses and technical people conducted by the Air Force Scientific
Advisory Board revealed that contractors do not perceive supportability and maintenance as
important factors for winning software development contracts. This study showed that software
contractors believe cost, performance, and schedule are the Government’s main concern. This
perception by contractors must be changed. The primary vehicle to help institute this change,
especially for your program, will be the emphasis given to supportability in your RFP. [PDSS90]

One method to emphasize the importance of supportability is to require pre-award competitive
software exercises (e.g., prototypes and demonstrations). These compute-offs can be followed
by multiple awards for design demonstrations. The design demonstrations are based on evolving,
value-added prototypes that ultimately converge into a fully supported product at the end of the
initial procurement. To make this acquisition strategy effective, the developing contractor(s)
must be required to support previous, but evolving, versions of the product the same way a PDSS
maintainer would. The prototype developers are required to select design(s) that promulgates a

Support Concept

Well Planned,
Consolidated Resources

Reduce Life
Cycle Support

 Costs

Early Analysis and Supportability Decisions
During Design

CRISD

12-21

Chapter 12 : Software Support GSAM Version 3.0

low-cost, efficient solution with minimal side effects on software maintenance. The subsequent
Engineering and Manufacturing Development (EMD) development contract is awarded to the
most supportable design.

Whether a contractor maintains the software, or it is transitioned to in-house government
maintainers, the maintainer must have the original developer’s SEE and other essential tools for
proper code maintenance. The following deliverables must be required:

• Data rights to make and install changes,
• Source code and documentation adequate to understand the code,
• Computer resources (SEE, computers, compilers, etc.) needed to modify the source code and

produce object code,
• Equipment and support software to test the subject code, to diagnose problems, and to test

solutions, enhancements, and modifications,
• Equipment needed to distribute and install the new software,
• A workable system to identify problems, resolve new requirements, and manage the support

workload, and
• Skilled personnel to perform required maintenance tasks. [ALC89]

The way you structure the RFP to acquire and develop your initial software can profoundly
impact the availability and usefulness of the required support environment. Therefore, you must
require that all offerors describe their plans for supportability as part of their proposal submission.
To ensure a prospective offeror’s systems engineering and software development processes
adequately address the supportability of software, it is imperative you carefully evaluate the
offeror’s software development processes during source selection. To do so, three major areas
must be addressed:

• Software Development Plan (SDP). Require the submission of a SDP with offerors’ proposals
that states how they intend to ensure their development process addresses supportability
relative to the systems engineering process. This plan is evaluated during source selection.

• Capability Evaluation.
• Instructions to Offerors (ITO). The ITO and source selection evaluation criteria must

specifically address those areas you consider critical processes. The evaluation criteria should
describe what is required of the offerors’ proposal and how it will be evaluated. The
Aeronautical Systems Center has developed an RFP template which provides general and
specific guidance on preparing the RFP for software-intensive systems. [You might also
consider requiring that offerors address the software supportability instructions contained in
Volume 2, Appendix S, Software Source Selection as part of their proposal response. In
addition, Appendix S provides a shopping list of RFP statements, definitions of software
supportability metrics, and a sample “Instructions to Offerors” that addresses supportability.]

12-22

Chapter 12 : Software Support GSAM Version 3.0

12.8.1 Specifying Supportable Software

Acquiring supportable software also requires the specification of software product performance
requirements. The major instruments contained within the RFP are illustrated in Figure 12-9.

Figure 12-9. Acquisition Instruments

12.8.1.1 Statement of Objectives (SOO)

The SOO defines an objective for efficient, life cycle software support consistent with total system
requirements. The SOO states that software supportability requirements and support characteristics
are to be managed as an integral part of system development.

12.8.1.2 Specification Practices

In accordance with the Perry Memo, your RPF must describe what you want to procure — not
how to design or build it. You can provide top-level system specifications or requirements
documents to satisfy the “what you want.” These specifications can only contain performance
requirements and key system characteristics — they can not contain design solutions or detailed
design requirements. You can describe the methods you intend to use to verify that system
requirements have been achieved. For each performance requirement, a corresponding method
of verification should be provided. Therefore, specify key software supportability characteristics
along with corresponding verification methods in the system specification or requirements
document. You should specify the following characteristics to ensure your software acquisition
is supportable:

• Module size. Module size affects software supportability. Module size [a typical computer
software component (CSC)] should generally not exceed 100 source lines-of-code (SLOC).

• Complexity. Application complexity affects software supportability. One generally accepted
complexity measure is McCabe’s Cyclomatic Complexity Measure, which should not exceed
10 for a given module.

• Programming language. The use of widely-accepted, higher order programming languages
to develop software enhances software supportability.

OBJECTIVES

(SOO)

SPECIFICATION CDRL INTSRUCTIONS

TO OFFERER

(ITO)

MODEL

CONTRACT

RFP

REQUIREMENTS

– PERFORMANCE
– CHARACTERISTICS

VERIFICATION

SRS/IRS

SOURCE

CODE

EVALUATION
CRITERIA

CDRL

CLINS

12-23

Chapter 12 : Software Support GSAM Version 3.0

• Spare memory. The availability of installed spare memory improves software supportability.
Spare memory permits the incorporation of enhancements and the correction of latent
deficiencies. The effect of spare memory on supportability was calculated for the E-3 AWACS
where two similar radars were delivered with 9% spare and 34% spare memory, respectively
for the APY-1 and the APY-2. Measurements revealed a 3 to 1 difference in cost and schedule
impact when making the same change to both E-3 radars.

• Spare computer throughput. The availability of installed spare throughput affects the software
supportability by permitting the incorporation of enhancements and the correction of latent
deficiencies.

• Spare computer system input/output. The availability of installed spare input/output affects
software supportability.

• Other parameters. These include Halstead Metrics, SAIC, Inc.’s Quality Profile Metrics for
Supportable Maintainable Software, the IEEE’s software reliability concepts as they may
apply to specifying a required level of software supportability, and Rome Laboratory’s,
Framework Implementation Guidebook, RL-TR-94-146, August 1994.

12.8.1.3 Documentation

Because software is unlike any other product, the only way to visualize and understand it is
through its documentation. Without accurate, high-quality documentation, software cannot be
understood. In essence, documentation is the most important aspect of software support.
Documentation delivery requirements specified in CDRLs include:

• Software and Interface Requirements Specifications,
• Software and Interface Design Descriptions,
• Database Descriptions,
• Software Product Specifications,
• Source Code Listings,
• Test plans/descriptions/reports,
• Software Development Plans,
• Software programming manuals,
• Software users manuals, and
• Software maintenance manuals.

The specific criteria for government acceptance of software design information should be clearly
specified in the appropriate CDRLs (DD Form 1423) items. This includes the verification
methodology, composition of the verification teams, and quantitative thresholds that must be
met or exceeded. Offerors should be encouraged to provide alternative verification approaches.

12.8.1.4 Life Cycle Software Support Strategies

To ensure the contractor’s process for developing the software addresses information and
documentation management, quality, and verification procedures, typical life cycle support
strategies available for source selection include the following.

12-24

Chapter 12 : Software Support GSAM Version 3.0

• Sole source (original contractor). The original contractor is awarded the software support
contract. The processes, products, and support system are already in place at the contractor’s
facility and typically are the same as those used during the development.

• Competitive (support equipment provided). A competitive contract is awarded and the
processes, products, and support systems are either transferred from the original contractor
facility to the competing contractor or the items are duplicated. The original contractor can
also be a competitor.

• Organic/contractor mix. The Government and the contractor share responsibility for software
support. Each agent is assigned a percentage of the software to be supported. Typically the
Government and contractor are collocated. The processes, products, and support system are
relocated to a government support center or the items are duplicated. Manning of the effort
is shared by the Government and either the original contractor or a competitive contractor.

• Organic. The Government assumes responsibility for software CSCIs. The processes,
products, and support systems are relocated to a government support center or duplicated.
Support processes are executed by government organic personnel.

12-25

Chapter 12 : Software Support GSAM Version 3.0

12.9 References

[ALC89] Supportable Software Acquisition Guide, First Edition, San Antonio Air Logistics Center, October
1989

[BASSETT95] Bassett, Paul, “Maintenance is a Misnomer,” Software Magazine, December 1995
[BISCHOFF91] Bischoff, Col Ron, as quoted in “Design and Planning Make High-Tech F-22 Easy to

Maintain and Support,” Aviation Week & Space Technology, July 15, 1991
[BOEHM81] Boehm, Barry W., Software Engineering Economics, Prentice-Hall, Inc., Englewood Cliffs,

New Jersey, 1981
[BORKY90] Borky, Col John M., as quoted in “ATF Avionics Met Dem/Val Goals, Providing Data for

Flight Tests,” Aviation Week & Space Technology, September 24, 1990
[GLASS92] Glass, Robert L., Building Quality Software, Prentice Hall, Englewood Cliffs, New Jersey,

1992
[IEEE90] Institute of Electrical and Electronic Engineers, Inc., IEEE Standard Glossary of Software

Engineering Technology, IEEE STD 610.12-1990, New York NY, December 10, 1990
[JONES91] Jones, Capers, Applied Software Measurement: Assuring Productivity and Quality, McGraw-

Hill, Inc., New York, 1991
[OLSEM93] Olsem, Michael R. and Chris Sittenauer, “Terms in Transition: Reengineering Terminology,”

CrossTalk, Software Technology Support Center, Special Edition, 1993
[PDSS90] “Report of the Ad Hoc Committee on Post-deployment Software Support,” US Air Force Scientific

Advisory Board, December 1990
[PERRY93] Perry, William E., “Don’t Pour Money Down Rat Holes that Infest Your Budget,” Government

Computing News, December 6, 1993
[PIERSALL94] Piersall, COL James, “The Importance of Software Support to Army Readiness,” Army

Research, Development, and Acquisition Bulletin, January-February 1994
[PRESSMAN92] Pressman, Roger S., Software Engineering: A Practitioner’s Approach, Third Edition,

McGraw-Hill, Inc., New York, 1992
 [SHUMSKAS92] Shumskas, Anthony F., “Software Risk Mitigation,” G. Gordon Schulmeyer and James

I. McManus, eds., Total Quality Management for Software, Van Nostrand Reinhold, New York, 1992
[SNEED91] Sneed, Harry M., “Economics of Software Reengineering,” Software Maintenance: Research

and Practice, Volume 3, John Wiley and Sons, Ltd., 1991

	Chapter 12 Software Support
	Contents

