
Part 1: Acquistion                                                                    GSAM  Version 3.0

Chapter 7

Acquisition
Planning



Chapter 7: Acquisition Planning                                                                              GSAM Version 3.0

7-2

Contents

7.1  Planning is Key to Success ......................................................................... 7-4
7.2  Strategic Planning Goals ............................................................................ 7-5

7.2.1  Program Stability.................................................................................. 7-7
7.2.2  Quality ................................................................................................. 7-7
7.2.3  Supportability ....................................................................................... 7-8
7.2.4  Cost and Schedule ................................................................................ 7-8

7.3  Software Acquisition Strategy ................................................................. 7-10
7.3.1  Mission Definition.............................................................................. 7-11
7.3.2  Acquisition Strategy Development ..................................................... 7-11

7.3.2.1  Competition ............................................................................... 7-12
7.3.2.2  Concurrency/Time Phasing ......................................................... 7-13
7.3.2.3  Design-to-Cost ........................................................................... 7-14
7.3.2.4  Performance Demonstrations ...................................................... 7-15
7.3.2.5  Performance Incentives .............................................................. 7-15
7.3.2.6  Make-or-Buy.............................................................................. 7-16
7.3.2.7  Pre-planned Product Improvement (P3I) ..................................... 7-16

7.4  Program Planning Process ....................................................................... 7-17
7.4.1  Planning Objectives ............................................................................ 7-18
7.4.2  Planning Scope................................................................................... 7-19
7.4.3  Recommendations for Program Planners ............................................ 7-19

7.5  Program Decomposition .......................................................................... 7-20
7.5.1  System/Segment Specification (SSS) .................................................. 7-20
7.5.2  Work Breakdown Structure (WBS) .................................................... 7-21

7.5.2.1  WBS Interrelationships............................................................... 7-21
7.5.2.2  Prime Mission Product Summary WBS ...................................... 7-22
7.5.2.3  Software Project Summary WBS ................................................ 7-22
7.5.2.4  Software Contract WBS ............................................................. 7-24
7.5.2.5  Software Project WBS ............................................................... 7-26

7.6  Market Analysis ....................................................................................... 7-27
7.6.1  Software Product Definition and Decomposition ................................ 7-27

7.7  Baseline Estimates ................................................................................... 7-28
7.7.1  Estimation Accuracy .......................................................................... 7-30

7.7.1.1  Program Estimate Selection ........................................................ 7-31
7.8  Continuous Program Planning ................................................................ 7-31

7.8.1  Continuous Planning Recommendations ............................................. 7-33



Chapter 7: Acquisition Planning                                                                              GSAM Version 3.0

7-3

7.9  Other Planning Considerations ............................................................... 7-34
7.9.1  Major Milestones and Baselines ......................................................... 7-34
7.9.2  Program Budgeting and Funding ......................................................... 7-36

7.10  References .............................................................................................. 7-37



7-4

Chapter 7: Acquisition Planning                                                                              GSAM Version 3.0

7.1  Planning is Key to Success

An analogy can be made between planning for the acquisition and management of major software-
intensive systems and planning for a military campaign.  Planning for combat was explained by
General H. Norman Schwarzkopf.

“I want to emphasize the importance of focusing on the enemy when planning and conducting
combat operations.  First, you must know your enemy.  Second, you must develop your plan
keeping the enemy foremost in mind.  Third, you must wargame your plan to enhance your ability
to develop or adjust the plan once enemy contact is made.”  [SCHWARZKOPF88]

You must view cost overruns, schedule slips, and performance shortfalls as your enemy.  You
must also emphasize the importance of focusing on risk when planning for and conducting your
program.  First, you must know your program-specific risks.  Second, you must formulate your
strategy to enhance your ability to develop or adjust your plan as you encounter new sources of
risk in the ever-changing program environment.

World-class software doesn’t just happen — it’s planned!  Planning is the most pivotal activity
you will perform as a program manager.  Planning, combined with process improvement, is a
continuous activity that must be revisited and improved upon throughout the life of a software-
intensive system.  A poorly planned software program is one that is doomed to failure.  Through
proper and careful planning you can address and deal with the five critical factors that determine
the success or failure of a software program:

• Quality
• Cost
• Schedule
• Performance
• Supportability

Although software planning is performed throughout the software life cycle, up-front, strategic
planning is the most crucial.  It addresses these critical planning factors that get exponentially
more costly to deal with in later phases. Software development is not an exact science, but using
a combination of good historical data and systematic techniques can improve the accuracy of
your estimations.  The F-22 program illustrates that software development success is achievable
through careful risk management and knowledgeable strategic program planning that combines
a keen sense of lessons-learned with a commitment to achieve insightful, intelligent, and creative
process improvement.  It involves interaction with Air Force agencies and strategic planning
stakeholders to arrive at the best software solution within budgeted resources.

In April of 1991, General Merrill A. McPeak, Air Force Chief of Staff, was proud to announce
the winner of the advanced tactical fighter (ATF) air superiority aircraft competition and the Air
Force’s new Top Gun.  The contract award for the future, fast, agile, stealthy super cruiser, the F-
22, was the result of a 54-month Demonstration /Validation (Dem/Val), where two contractor
teams dueled for Air Force favor in an unprecedented, risk reducing, joint government/industry-
sponsored face-off.  [EASTERBROOK92]  Applying lessons-learned from the B-2, Air Force
planners had the more complex ATF fighter airborne in just four years.  For the F-22 software



7-5

Chapter 7: Acquisition Planning                                                                              GSAM Version 3.0

development effort, strategic planning made the difference.  Our ATF planners must be commended
on their success.  Former Secretary of the Air Force, Donald B. Rice, praised them when addressing
the House Armed Services Committee after the award of the F-22 contract.  He stated that there
has never been a defense program “that invests as much in the front end...and is in as confident
a position to enter full-scale development as the ATF.”  [RICE91]  The critical nature of software
in the weapons and information systems you are developing or maintaining today, mandates that
you take every action necessary to ensure program success.

When trying to assure the overall success of your program, there are three important points to
remember when planning your software acquisition.

1. Software is always on the critical path. It is usually the biggest cost item in major DoD
software-intensive acquisitions, and is also the highest risk item that must be steadfastly
managed.  The ATF planners used a strategy that included lessons-learned from the C-17
development where the software element was considered an unrealistically low-risk item.
[REILY92]  To better manage the F-22 software development, they decided that software
costs must be tracked separately from hardware costs in the Engineering Manufacturing
Development (EMD) phase.  This was the first time the Air Force had taken this approach to
manage and reduce the risk of software cost escalations on a new aircraft.  [HUGHES92]

2. Strive for consistency and completeness.  Consistency means having single standard languages
(i.e., Ada) where possible, a standard terminology, a standard software engineering
environment (SEE) used by all subcontractor team members, and a strong configuration
management program.  Completeness means, quite simply, good documentation.

CAUTION:  In planning for “good documentation,” do not fall into the “excessive”
documentation trap!  Less required documentation (i.e., only that which is necessary for
technical software development and maintenance) of higher quality is the goal.

3. Keep government personnel abreast of the development process so they know what is
going on and understand the software and how it works.  An important ingredient in program
success is to be an enlightened and supportive customer.  If the contractor encounters
unforeseen problems, do not criticize and throw rocks — but cooperate in the search for a
solution.

7.2  Strategic Planning Goals

At the Pentagon there is a sign posted above the DoD Joint Staff office door (quoted from Field
Marshal Helmuth Graf von Moltke) that says:

“Planning is everything.  Plans are nothing.”

The meaning behind von Moltke’s statement lies in understanding the concept of a process-
focused approach to problem solving, as opposed to a product-focused approach. Planning success
is achieved though the planning process.

In 1988-89, the Defense Systems Management College (DSMC) and Harvard University analyzed
the findings  of several commissions held over a twelve year period and their own extended



7-6

Chapter 7: Acquisition Planning                                                                              GSAM Version 3.0

research to determine why there were so many defense acquisition program failures. The objective
of the study was to determine how Government might learn to “do business like business.”
[DSMC89]  This theme was reiterated more recently by John Deutch, Under Secretary of Defense
for acquisition and technology when he said:

We have built up a separate way of doing business with DoD that is entirely different than... the
commercial sector.  There will be a time when a separate defense industrial complex will become
too costly to maintain.  We have to learn to rely much more strongly on doing business like the
private sector.  [DEUTCH93]

The strategic planning goals leading to program success are listed below and are also illustrated
in Figure 7-1.

• Program stability,
• Quality (including performance),
• Supportability, and
• Cost and schedule.

Figure 7-1.  Strategic Planning Goals for Program Success

Achieving stability, quality, supportability, schedule, and budget are all determinants of software
program success. A realistic cost and schedule that enables built-in product quality enforces on-
time completion, which enhances program stability.  Program stability, cost, and schedule are
always joined at the hip.  A stable program can be executed more quickly than one, which is
constantly changing, or subject to change in an unforeseen way.  Also, a program completed
within its projected schedule is subject to the forces of change for the minimum time possible.

Project/Program Management

System/Software Engineering

Logistics Management

Contracting Management

Production Management

Qual ity Management

Financial Management

QUALITY
COST
SCHEDULE
PERFORMANCE
SUPPORTABILITY

MEASURES OF SUCCESS

A
C

Q
U

IS
IT

IO
N

 F
U

N
C

T
IO

N
S

GOOD BUSINESS PRACTICES

Project/Program Management

System/Software Engineering

Logistics Management

Contracting Management

Production Management

Qual ity Management

Financial Management

QUALITY
COST
SCHEDULE
PERFORMANCE
SUPPORTABILITY

MEASURES OF SUCCESS

A
C

Q
U

IS
IT

IO
N

 F
U

N
C

T
IO

N
S

GOOD BUSINESS PRACTICES



7-7

Chapter 7: Acquisition Planning                                                                              GSAM Version 3.0

Poor quality can cause schedule overruns leading to cost overruns.  This can be particularly true
where the true quality is not known until final testing is complete and/or the software is in the
user’s hands.  Post-deployment might be the first time you learn that your software simply does
not work.  Lessons-learned from past DoD failures to meet schedule objectives show that schedule
slips promote excessive changes in requirements.  Users having to wait inordinately long periods
before their needs are satisfied, invariably identify additional requirements as time and technology
advance.

7.2.1  Program Stability

“Recognition of the distinction between a stable system and an unstable one is vital for management
. . .  A stable system is one whose performance is predictable.  It is reached by removal, one by one,
of special causes of trouble, best detected by statistical signal.”  — W. Edwards Deming
[DEMING86]

The DoD acquisition process has environmental factors not found in the commercial world, such
as congressional oversight with one year funding constraints on how and where Defense dollars
are spent.  Given these differences, it is uniformly acknowledged that program stability is the one
business practice that should be institutionalized in DoD acquisition policy. It is also the first or
primary goal you should strive to achieve in your program planning efforts, which should ripple
across all traditional acquisition functions (e.g., engineering, logistics, and financial management).
The key attributes of program stability are steadiness of purpose, a firmly established plan, and
a supportive system.  Your strategic planning process must link program objectives to resources
(time, people, funds, and technology).  [Resource estimation is discussed in Chapter 13, Software
Estimation, Measurement, and Metrics.]  It must organize these resources and define a process
for achieving the approval of all stakeholders to guarantee the implementation of your strategic
plan.  It must then guide the development phase and provide for the integration of the effort.
Your approved plan should be a product of systematic consensus and a clear decision process.

Maintaining stability in a program that must be accelerated in order to meet a military threat, or
that has had its budget cut by 50%, is often a significant management challenge.  However, the
steps you take to achieve stability (i.e., having an established plan and understanding how your
resources are tied to program objectives) can help you restabilize after a change.  Not having a
flexible plan that adapts to change will often mean chaos added to chaos when your budget gets
cut or requirements are added or modified.  The time you spend defining your acquisition strategy
early on will go a long way in assuring stability throughout the entire life of the system, especially
during the critical acquisition years.  The Cost Analysis Requirements Document (CARD)
[discussed below] is an excellent tool for structuring your program for stability.

7.2.2  Quality

Without exception, the second most important goal must be product quality.  In the past, the
goals of cost and schedule often took priority over quality because they had the highest visibility
during early phases of development. Until the testing phase, quality is essentially an unknown or
invisible commodity.  The rewards for software with good operations and maintenance records
are usually not enjoyed by the program manager who developed and delivered the product.  This



7-8

Chapter 7: Acquisition Planning                                                                              GSAM Version 3.0

lack of positive feedback creates managers who let costs and schedules drive their decisions —
often at the expense of quality.  This is “penny-wise and pound foolish!”

If you let cost and schedule take priority over quality, by the time your software is coded and
ready for testing, it can be so riddled with defects that dynamic testing is painfully time-consuming,
costly, and difficult.  Once the software is in the user’s hands, poor quality becomes excruciatingly
visible because the cost to fix garbage code is exponentially greater than the cost of building a
quality product (not to mention the damage to user confidence poor quality causes).  [KINDL92]
With quality as a key planning goal, you will produce a good product on a predictable schedule
at a predictable cost with the desired performance.  Remember, one of the most important
ingredients in producing quality software is the belief in the importance of its mission and an
associated commitment at all levels to support that belief.  Remember, the true success of your
software can only be determined from a life cycle perspective.  To deliver a quality product you
must be willing to adjust cost, schedule, and resource allocation to support the quality goal,
however you define that goal.

Sufficient performance, a quality attribute, is defined in terms of mission capability, supportability,
life cycle costs, and unit costs.  Beware, rigid or excessive system performance requirements can
drive costs unnecessarily high and stretch out schedules.  The metrics you use to define your
performance goals will ultimately help to determine quality and cost.  [See Chapter 13, Software
Estimation, Measurement, and Metrics for a discussion on these metrics.] Pre-planned product
improvement (P3I) and evolutionary development are the standard approaches used to obtain
desired technology or features not available at planned schedule cutoff points and milestone
decisions.  An iterative, evolutionary design process allows for flexible development that
advantageously considers performance tradeoffs as the design evolves.

7.2.3  Supportability

A system that cannot be supported after it is built quickly becomes useless.  Worse, when a
system is found to be unsupportable, previously used systems may have already been dismantled
or removed. Too often, a project has been completed, declared a success, and its builders given
accolades for their performance, only to be followed by the discovery in the field that it cannot be
maintained. Supportability must be planned and designed into the system from the beginning.
Trying to add it later can only be done at great cost, if at all. Ensure that your planning includes
supportability as a strategic goal.

7.2.4  Cost and Schedule

The successful F-22 acquisition strategy set a precedent for holding down the price of future
DoD weapons systems.  Because contractors were required to gamble their own funds, there was
great incentive to propose cost-effective solutions.  One competing program manager remarked,

“Except for the investment, Dem/Val was great.  We probably developed the technology in half the
time we would have if we had not had a competition and a good, big team.” — Thomas R. Rooney
[ROONEY90]



7-9

Chapter 7: Acquisition Planning                                                                              GSAM Version 3.0

Throughout this chapter the words “cost” and “schedule” are used over and over because they
are two critical metrics used to assess program performance.  In DoD, they are often the drivers
used to define program management practices.  Their importance is not surprising given the
pressing need to update old systems and develop new ones to meet new requirements or threats
in today’s resource-constrained Defense environment.  As General John W. Vessey Jr., while
Chairman of the Joint Chiefs of Staff, explained,

“Resource-constrained” environment [are] fancy Pentagon words that mean there isn’t enough
money to go around.”  [VESSEY84]

Staying within budget has been one of the most difficult software management goals to achieve.
Much of the difficulty arises from the DoD budgeting and funding process.  Long lead times are
needed to get money committed; therefore, program costs must be projected long before software
requirements are defined and software cost elements can be realistically estimated.  Unfortunately,
systems planners are impacted when insufficient dollars are allocated to the software element
(on the system’s critical path) which in turn often causes the overall program schedule to slip.
[MARCINIAK90]

The RFP should require that offerors provide a development schedule appropriate to the known
requirements, showing all major milestones, audits, reviews, inspections, and deliverables.  It is
expected that this schedule will change as requirements become better defined. You must evaluate
this schedule to determine if the offeror understands the need for presenting detailed schedule
information and for tying that information to detailed program task requirements.  You must also
determine whether the program tracking system being proposed is part of the company’s normal
management practices or if it is new for this program.  Also, you will want to ensure schedule
needs and types are described and included in the Software Development Plan (SDP).

Problems are often created when schedule baselines are established before software requirements
are well defined and understood.  Government RFP preparers may include schedule information
based on factors that do not take into account the system development process or software
requirements.  Offerors then inadvertently accept RFP schedule information as a requirement for
a responsive proposal, and prepare their response based on these so-called requirements.  This
practice causes offerors to bid to untenable schedules affecting the viability of their submissions,
decreasing the probability they will complete tasks as proposed.  One solution is to provide
minimum schedule guidance, and to require that offerors propose development schedules based
on program requirements and their own development approach.

Where users remain adamant that arbitrary delivery dates must be met, you will do well to work
with them on the concept of evolutionary and/or incremental deliveries versus a full scope
capability.  Even then, it is recommended that you use every persuasive power at your command
to educate them on the exceedingly high failure rate for programs with unrealistic schedules.

NOTE:  DoD is more interested in receiving a quality product on a predictable schedule
at a predictable cost than in setting arbitrary target dates which may not be achievable.



7-10

Chapter 7: Acquisition Planning                                                                              GSAM Version 3.0

7.3  Software Acquisition Strategy

Acquisition strategy has been defined as a master plan, a road map, a blue print, and a plan-to-
plan-by to achieve program goals and objectives. Every major software-intensive development
has the possibility of failure. Your acquisition strategy serves as a means for reducing the odds of
program defeat through the organized preparation of a plan to minimize software risk.  It serves
as a guide to direct and control the program, and as a framework to integrate those functional
activities essential to fielding a totally operational system — not just pieces of hardware and
software.  The conceptual basis of the overall plan — the objective — is what you must follow
during program execution.  It also serves as the basis for all program management documents,
such as the Acquisition Plan, the Test and Evaluation Master Plan (TEMP), the Integrated Logistics
Support Plan, and the Systems Engineering Master Plan (SEMP).

As you learned in Chapter 6, Risk Management, your Acquisition Plan must address, deal with,
and identify risk issues and alternative solutions.  You must decide on what type of contracting
strategy to employ, such as design-to-cost, award fee/incentives, or to make-or-buy your software
element, which brings with it the issue of data rights. Your development methodology might
include concurrency or time phasing of development phases, prototyping, P3I, evolutionary
acquisition, and/or incremental development.  The supportability of your software must also be
part of your acquisition strategy which includes the requirement for an open systems architecture.
Other alternatives include the design and use of reusable assets; re-engineering as a re-development
alternative; assessing your potential suppliers’ development maturity; and tracking and controlling
risk elements.  Additional factors you should address are the cost of scrap and rework, program
budgeting and funding risks, a forecast of how future technologies might impact your development,
and what kind of planning and management tools you can employ to facilitate your planning
activities.

Because acquisition strategies for software systems abound, you should conduct a meaningful
lessons-learned exercise before settling on your final acquisition and development plan of action.
The ATF engineering and manufacturing development (EMD) approach and contract were strongly
influenced by careful review of how a whole procession of prior avionics developments went
astray.  According to Colonel Borky, ATF planners based their final acquisition strategy on avoiding
the following list of classic mistakes that get made over and over.

• Unrealistic estimates of time, costs and manpower requirements to execute a development.
(Admittedly, we still lack good estimating methods and tools, but there’s ample evidence of
program managers who willfully understate resource requirements for software to fit within
a program budget when they cannot cheat on the hardware estimates.)

• Inadequate planning for software integration and test, including required facilities.
• Allowing contractors to do significant coding before system engineering is complete and

requirements are stable.  [BORKY91]

Selecting the right type strategy for your program is much the same as selecting the right strategy
for winning a battle.  When preparing a battle plan, you must first know what you are getting into
and what you have to take with you.  Sun Tzu, master Chinese strategist and general during the
Era of the Waring States (circa 500BC), explained:



7-11

Chapter 7: Acquisition Planning                                                                              GSAM Version 3.0

“Know the enemy and know yourself; in a hundred battles you will never be in peril... If ignorant
both of your enemy and of yourself, you are certain in every battle to be in peril.”  [SUN500BC]

Knowing your enemy and yourself, will enable you to understand your mission, identify your
enemy, assess the terrain over which you must pass, and from this, determine your tactics.  Your
tactics, when combined, make up your overall acquisition strategy.

7.3.1  Mission Definition

Your mission is to deliver a software system that fulfills user requirements, on time, within
budget.  In many cases, however, the user may not understand exactly what those requirements
are, so clarification of the mission may fall on your shoulders. This mission definition includes
timing (schedule) and cost constraints that may have an effect on perceived requirements.  The
enemy can be equated to all those risk factors that conspire against the completion of your mission.

The enemy to a successful acquisition is not always as clearly defined as is the enemy in a
conflict between nations.  The enemy may include a variety of programmatic risks or constraints
such as a short schedule, a limited budget,  factors in the development environment (software
being developed concurrently with hardware, or software pushing the leading edge), or the
requirement to build software designed for reuse and easy maintenance.  Assessing the terrain
involves analyzing the business base, the capabilities of the development team, development
system hardware, and host system hardware for which the software is being built.

7.3.2  Acquisition Strategy Development

When preparing your acquisition strategy, you must consider all the factors pertaining to the
requirement such as:

• Budget
• Technical aspects of the software
• Hardware on which the software will operate
• Obtainability of existing software to satisfy the requirement
• Availability and past performance of organic or contractor developers
• Timing of hardware and software development
• Size and functions required for the program office
• Software reusability
• System maintainability
• Ad infinitum

Obviously the list of issues that can affect the software development strategy is long and
complicated and will differ among programs.  The bottom line is, you must consider every
possibility when selecting contractual, schedule, and budgeting tactics in developing your
acquisition strategy.  It must be derived from a commitment to encircle, outflank, out think, and
triumph over the enemy at every encounter.  Your strategy must not be a rigid formula, but a
flexible framework that can be applied artfully as circumstances dictate.  It must also be based on



7-12

Chapter 7: Acquisition Planning                                                                              GSAM Version 3.0

the application of common sense and best practices found in these Guidelines to address the
inevitable problems that emerge in every major software acquisition due to the extreme complexity
of the endeavor itself.  Sun Tzu expressed this strategy when he proclaimed:

“When the enemy is at ease, be able to weary him; when well fed, to starve him; when at rest, to
make him move. Appear at places at which he must hasten; move swiftly where he does not expect
you.” [SUN500BC]

If your software requirements are relatively risk free, you might choose a straightforward approach.
If on the other hand, your software is complex and deeply embedded in a hardware system and/
or unprecedented, then your acquisition strategy will be quite complex and must involve extensive
research into alternatives.  For example, avionics software acquisition usually follows airframe
development and avionics hardware selection.  The airframe developer may then choose to
subcontract the development of the very sophisticated software suite needed to mechanize the
complex of weapons delivery systems.  Planning for this type arrangement will greatly impact
your acquisition strategy.  The acquisition strategies commonly used for major DoD software-
intensive acquisitions generally include the following concepts:

• Competition,
• Concurrency/time phasing,
• Design-to-cost,
• Performance demonstrations,
• Performance incentives,
• Make-or-buy, and
• Pre-planned product Improvement (P3I).

7.3.2.1  Competition

The software industry supplies technology for software development. It also supplies engineering,
development planning, management, organization, infrastructure, and processes. These elements
were created by industry through efforts to capture market share and gain a competitive edge.
Although academia helps sow the seeds of research and training, industry competes to apply
better ideas to the software engineering task.  Competition is vital to enable technology
improvement in defense software acquisition.  The forces of innovation are unleashed when
industry is challenged to compete for the position of the best supplier.

Defense competition can take many forms.  In fact, there may even be no competition.  For
example, a sole source procurement might be selected due to the nature of the product and the
availability of the source.  A competition can involve two or more companies and may occur
during research and development or implementation.  Two generic forms of competition are
used in military acquisitions:



7-13

Chapter 7: Acquisition Planning                                                                              GSAM Version 3.0

• Design competition.  An example of this was provided in the F-22 procurement discussion.
Two or more competing teams of companies develop concept and design approaches, one of
which is selected for the production contract.  The benefits of this type of competition are a
clearer understanding of requirements through multiple perspectives, high risk items are
identified and resolved in a more thorough manner, budget commitment is deferred until
PDR, and the risk of selecting a poorly qualified FSD contractor (organization) is reduced.

• Production competition. Two or more companies bid to secure all or part of a production
contract.  Where more than one company is employed through initial production, risk is
further reduced.

In general, you will be discouraged from dual awards for design and/or partial production because
this requires additional funding up front.  However, experience has shown that the longer two
competing contractors are carried, the greater the opportunity for success.

7.3.2.2  Concurrency/Time Phasing

Concurrency is a fast track acquisition strategy that involves the overlapping of design, testing,
production, and deployment activities.  The overlapping and elimination of phases in the
acquisition cycle, as well as overlapping or eliminating activities within a phase, are also choices
based on the urgency of the need or the maturity of the system.  A realistic technology assessment
and allowance for critical time duration activities are key in planning a program with a high
degree of concurrency between (or within) phases of the acquisition process.

Concurrency is used in response to a need to get a product to the field within a critical time
frame.  Short acquisition cycles, abbreviated proposals, condensed statements of work, minimal
data reporting, use of commercial practices, and fewer reviews are all used to reduce costs and
expedite schedules.  A classic example where a concurrency strategy was successfully used was
on the Thor missile program.  The winning contractor’s proposal consisted of a mere 20 pages
describing how they intended to manage the program.  The contract was awarded in December
1955 and the Thor flew successfully 13 months later.

Another example of a successful concurrency strategy was the Single-Stage Rocket Technology
(SSRT) program.  The contractor used commercial practices wherever possible which included
almost one million lines of COTS test software for controlling ground and flight operations.
Nearly 70,000 lines of onboard Ada flight control software were generated using a commercially
available autocoding technique that cut costs an order of magnitude over conventional coding
methods.  They also reduced the number of government/contractor program meetings, saving
additional cost and manpower.  [WORDEN94]

An example of the risk involved in concurrency was the Sergeant York anti-aircraft gun or
“DIVAD” for Division Air Defense, one of the most important weapons systems to be canceled
while in production.  Concurrency was used to cut normal acquisition time (10+ years) in half
and save money.  This approach featured parallel development by two competing contractors;
the use of off-the-shelf components, a skunk works approach with thinly staffed government/
contractor program offices shielded from outside scrutiny, contractor flexibility in making cost/
performance tradeoffs, limited and combined developmental and operational testing, and a
concurrent follow-on development and initial production phase.  The strategy stressed minimum
government oversight during system development and reduced reviews and reporting
requirements.  Government access to contractor facilities and information was also limited.
[GAO86]



7-14

Chapter 7: Acquisition Planning                                                                              GSAM Version 3.0

NOTE:  Taken from Al Capp’s Li’l Abner comic strip, the term “skunk works” was first
used by Lockheed on the U-2 and SR-71 programs. It denotes a separate management
operation outside the normal acquisition process due to the highly classified nature of
the contractor’s work.

By concurrently developing, testing, and making improvements while in production the gun’s
considerable software integration problems were never ironed out.  The procurement was canceled
when it failed to perform during follow-on operational test and evaluation (FOT&E) and the
Government was stuck with 64 SGT Yorks at ~$42 million apiece.

The main advantage of concurrency is the achievement of an early operational capability.  Another
is that design maturity and operational problems surface sooner through earlier testing.
Concurrency, however, introduces the substantial risk of performance shortfalls, schedule overruns,
and cost growth, especially in complex, unprecedented software-intensive systems.

7.3.2.3  Design-to-Cost

Design-to-cost is designing the system to fall within fixed cost and schedule limitations. It is a
proven acquisition tool for obtaining lower unit costs.  Design-to-cost forces identification of
measurable design parameters which can be prioritized and used as targets in managing cost.
Since budget and schedule limits are known up front, this approach can result in better requirements
definition and increased efficiencies.  The disadvantages are that it forces you to commit to a
design-to-cost goal before final software requirements are defined.  Hence, the need to sell the
program may drive design-to-cost goals down to unrealistic levels.  Also, since there are no
practical ways to validate life cycle cost estimates, the contractor (or the Government) may choose
to down-scope performance requirements to meet cost goals.

Computer Sciences Corporation (CSC) successfully used a design-to-cost approach to build a
document control and tracking system for a pharmaceutical drug application.  This was a process
improvement initiative to invest in the development of a tool that would reduce the time it takes
to get drugs through the testing and regulatory process (8 years) by 50%.  This development had
to be accomplished within a fixed time, fixed cost, and above a fixed functional baseline.

To accomplish their goal, they used what they called the “Blue Chevy Policy.”  All they needed
was basic transportation — not a Mercedes, not a convertible, or a truck.  They needed to provide
an adequate solution today — not the ultimate solution tomorrow.  Their design-to-cost approach
relied heavily on hardware and software commercial off-the-shelf (COTS) products with as little
custom development as possible.  This required a partnership between the developer and the
user to accomplish their common goal within mutually agreed upon architectural constraints.
This meant the developers had to have direct and continuous access to the user, especially during
the proof-of-concept prototyping process.

Training and documentation were developed in parallel with the system.  When the program was
completed on time, training began the next day.  With a good architecture and user-involved
prototyping throughout all phases of development, system functions exceeded expectations.  They
delivered a “Loaded Blue Chevy” and were able to grow the company into new areas of technology.
[KEMP94]



7-15

Chapter 7: Acquisition Planning                                                                              GSAM Version 3.0

7.3.2.4  Performance Demonstrations

An example of what can go right is the strategy used by F-22 planners to assess performance
requirements fulfillment. Using an open market strategy, each ATF competition team built their
own demonstration aircraft using their own funds (50% contractor/50% government) and ideas
which the Air Force evaluated during the Dem/Val phase. A less desirable alternative would
have been a paper design — only testable at the end of full-scale development (FSD).  [MRAZ91]
This strategy was markedly different from that of the B-2 Bomber where the design was frozen at
the beginning of Dem/Val.  In effect, the demonstration phase, where alternative approaches are
explored and bugs are worked out, was virtually skipped.  This meant the B-2 was developed on
an essentially noncompetitive basis with a cost-plus contract awarded to a single prime contractor
eliminating the possibility of achieving a better design solution and reducing cost and schedule.

One reason ATF Dem/Val testing was such a success was because flight test objectives differed
radically from traditional military testing. Instead of checking for compliance with a laundry list
of requirements, ATF demonstration aircraft were used to show that the competitors had analytically
predicted aircraft behavior by spot-checking the performance and technology issues each team
thought were critical.  “We didn’t come into the Dem/Val with what the military thinks of as
requirements,” remarked Lt. Col. W. Jay Jabour, director of the ATF combined test force.  “We
said to the contractors:  ‘Demonstrate what you think shows that you reduced risk to enter full-
scale development.’  Giving the contractor the latitude to fly his test program is a little bit
different.”  [JABOUR91]  Colonel John M. (Mike) Borky, former director of ATF avionics, noted
that the Dem/Val phase was a huge success because it fostered rapid technology insertion and
established the baseline configuration for the next phase, FSD.  This method of testing along
with demonstrations insured that once the selected design went into FSD, there would be no last
minute surprises dragging out the schedule.  There would also not be the need for additional
large sums of money to fix a system that did not work.  [BORKY91]

7.3.2.5  Performance Incentives

Performance incentives are a proven risk reducing acquisition strategy that rewards developers
for exceptional contract performance.  For incentive or award type contracts [i.e., cost-plus award
fee (CPAF), cost-plus incentive fee (CPIF), and firm-fixed-price incentive fee (FFPIF), you may
have difficulty identifying the factors on which to base the additional fee.  While there is no
standard guidance, incentive awards can be based on:

• Milestone completion.  The degree of completeness for major software milestones has been
successfully coupled with award fees.  Surveys among Air Force managers show these award
fees can enhance software development and documentation quality.

NOTE:  Difficulties can arise if software development progress is evaluated independent
of system development progress.

• Software quality and reliability.  Quality and reliability are prime candidates for award or
incentive fees since they greatly affect both development and support.  Remember, software
quality and reliability can only be determined through an effective measurement program.
[HUMPHREY90]



7-16

Chapter 7: Acquisition Planning                                                                              GSAM Version 3.0

Contractors have a number of corporate goals which include profit, perpetuation, growth, and
prestige.  Most defense contractors are adverse to risk and operate on the premise that a satisfactory
profit at acceptable risk is better than maximum profit at a high risk.  Software development for
the military is a very high-risk corporate endeavor.  Performance incentives and award fee contracts
offer a means for motivating contractors to achieve more than minimal program objectives without
excessive risk.  This forces the Government and the contractor to work as a team — rather than
as adversaries.

CAUTION: A problem with this type approach is that often so much effort is put into
preparing for the award fee board that productivity is sacrificed.  Also, problems that
should be dealt with as a team can be hidden from the Government to look good on
performance reports.  Nevertheless, award fees are a proven, effective means for assuring
the achievement of desired performance, quality, and supportability objectives.

7.3.2.6  Make-or-Buy

The contractor’s make-or-buy decision recognizes that few, if any, prime contractors can or want
to make all of the many components required for a sophisticated, complex major software-intensive
system in the time allowed, within cost limits, and at required quality levels.  Buy decisions on
the part of the prime can involve buying COTS or employing subcontractors to make subsystem
software components.  However, as you will learn in Chapter 8, Contracting for Success,
subcontractors present government managers with a new set of issues.  With subcontractors, the
program office is divorced from direct contact management of the software developer because
the subcontractor is under contract to the prime, not the Government.

The government make-or-buy decision involves whether to buy the software as COTS or contract
for the development of a custom (or a combination of custom and COTS) solution.  If custom-
made, data rights issues must be analyzed and resolved.

7.3.2.7  Pre-planned Product Improvement (P3I)

If a technology or threat change occurs during the development of a software-intensive system,
you can respond to these changes in one of two ways:  (1) redesign the system to incorporate the
change, or (2) continue the development as originally designed to deployment and modify the
system later in the field.  Both of these approaches can be costly to implement.  There is always
the risk that complete success in meeting unprecedented and unplanned for threats (or needs)
will not be achieved.  P3I provides an approach to meeting such needs without having to develop
a new system.  It entails making plans for probable future needs by improving the system as
technology becomes available.  The advantages of this strategy are:

• Responsiveness to threat changes and future technology development,
• Earlier initial operational capability (IOC) for the baselined system,
• Reduced development risk,
• Potential for subsystem competition,
• Enhanced operational capability for the final system, and
• Increased effective operational life.



7-17

Chapter 7: Acquisition Planning                                                                              GSAM Version 3.0

The disadvantages are:

• Increased nonrecurring cost during initial development,
• Increased technical requirements in areas such as memory efficiency, source code efficiency,

and reliability,
• Increased complexity in configuration management,
• Vulnerability to goldplating accusations and funding cuts,
• Compounding system management problems due to parallel developments, and
• Interference with the orderly development and implementation of effective support plans and

procedures.

7.4  Program Planning Process

The planning process involves decomposition of the system into functional elements or subsystems.
The functional subsystems are then decomposed or allocated into lower tier elements.  This
process continues until the smallest functional element is identified.  Within this systems
engineering process, various market analyses and trade studies are conducted to determine the
best solution to satisfy the particular subsystem allocated requirements or element of the subsystem.
Normally, this process follows a hierarchy where the architecture is the first element to be evolved.
The architecture is usually composed of components, interface between components and the
functions to be interchanged.  The architecture design also considers timing and bandwidth of
the interfaces.  From this architecture, the functional specifications for the components can be
developed.  These components will typically consist of both hardware and software.

The elements of a Strategic Software Management Plan are:

• Objectives and scope.  The objectives identify the overall goals of the program, without
consideration for how they are accomplished.  The scope identifies the primary functions the
software must accomplish, defined quantitatively.  It describes what has to be done, for whom,
by when, as well as the criteria for determining program success.

• Risk assessment/management. This activity filters throughout the process by determining in
advance the possibility that a problem will occur, estimating its probability, evaluating its
impact, and preparing solutions in advance.  Risk assessment begins prior to acquisition
strategy development and continues as an integral part of software management activities

• Decomposition of software components by function and task.  Rather than attempting to
understand and plan the entire program as a single entity, experience shows that it is easier
and more effective to break down the overall program into smaller, more manageable elements.
At a top level, the System Segment Specification (SSS) identifies those requirements and
system functions that must be fulfilled by either software or hardware.  At increasingly lower
levels, the work breakdown structure (WBS) subdivides the program into more easily defined,
understood, tracked and managed discrete tasks.

• Market analysis.  This consists of trade studies for hardware and COTS software products.
It also entails assessing competitive sources through Sources Sought Announcements, Broad
Agency Announcements (BAAs), and Requests for Information (RFIs) in the Commerce
Business Daily.



7-18

Chapter 7: Acquisition Planning                                                                              GSAM Version 3.0

• Resource estimation.  These are quantitative assessments on the number of people required
and the cost, schedule, and size of each individual element comprising the whole software
development task.

• Software size estimates.  These estimates are quantitative assessments of the amount of code
required for each product element (system, subsystem, component, and/or module).

• Software cost/schedule estimates.  These estimates are based on the size of the program,
product attributes (such as application complexity and security requirements) and
environmental considerations (such as development team productivity, CASE tool use, and
availability).  Various estimating techniques and/or models can be used to estimate manpower
requirements (staff-months of effort), cost ($), and schedule (calendar month duration).

• Software support estimates.  These are estimates of the resources required after system
deployment.  They are typically based on system size and original development effort.  Although
actual post-deployment costs must include product upgrades, error corrections, future
evolutionary enhancements, and rehosting to new hardware platforms, most software support
estimating models do not include all these elements in their estimates.

• Progress measurement and control.  These are on-going measures after contract award.
They consist of formal programs for measuring and evaluating your contractors’ progress
against baselined budget, schedule, and quality standards.  Typically, this involves defining
and collecting specific metrics that are consistent with the agreed upon baseline.  Although
these measures may not answer all the questions about why variations from the baseline are
being experienced, they should be sufficient to identify that significant deviations are occurring.
They should also provide you with sufficient information with which to question your
developer.  Historically, this has been one of the weakest software management activities.

ATTENTION!  The Strategic Software Management Plan need not be developed by the
government program office except in outline form.  However, one of the required products
for evaluation during source selection should be detailed strategic software management
plans submitted by the offerors with their proposals.

7.4.1  Planning Objectives

A veteran of the Vietnam War, Colonel Harry G. Summers, Jr. greatly influenced the serious
study of strategic planning within the US Army.  His theory on objectives was:

“The first principle of war is the principle of The Objective.  It is the first principle because all
else flows from it.  It is the strategic equivalent of the mission statement in tactics and we must
subject it to the same rigorous analysis as we do the tactical mission.”  [SUMMERS81]

The objective of the software planning process is much like the first principle of war.  It is the
first activity of the planning effort because all else flows from it.  It provides a framework (or
plan) from which an understanding of the mission and the execution of the effort can flow.  This
includes having a baseline upon which to estimate the resources, cost, and schedule required, as
well as to evaluate recommendations for program changes.  The plan serves as a guide for the
Special Program Officer (SPO) and as a means to communicate the content and execution of the
program to individuals outside the SPO.  As the program progresses, the objective and the plan
must be subjected to rigorous analysis.  You will progressively be able to quantify your original
estimates.  Thus, it is important to update your plan to reflect any changes in requirements and



7-19

Chapter 7: Acquisition Planning                                                                              GSAM Version 3.0

program management issues, and to more accurately document your new understanding of costs/
schedules, risks, and other technical issues.

7.4.2  Planning Scope

The first activity in the planning process is to define the scope of the software effort.  It includes
function, performance, constraints, interfaces, and reliability.  The definition process starts with
the System/Segment Specification (SSS), which is further decomposed with the work breakdown
structure (WBS).  Make sure the functions described in the Statement of Scope are evaluated and
refined to provide the greatest amount of detail before beginning your estimation process.  This
means that the performance allocated to the software segment during systems engineering must
be bounded and stated explicitly (e.g., quantitative data such as the number of simultaneous
users and the maximum allowable response time).  Constraints and/or limitations (e.g., cost/
weight factors that restrict memory size) are the limits placed on the software by external hardware,
available memory, or other existing systems.  Mitigating factors (e.g., desired algorithms, well
understood and available in Ada) must also be taken into account. [PRESSMAN92]

7.4.3  Recommendations for Program Planners

Past experience has given us a number of recommendations we can use to produce better, more
realistic plans.

• Planners must allow for an extended schedule to compensate for the impacts of implementing
new methodologies and adequately train personnel to build a repeatable process.

• Ensure there is enough schedule time to include quality in your product.  Allow enough lead
time between reviews and formal delivery of documentation.

• When new equipment, methods, and processes are introduced concurrently, a tremendous
learning curve exists.  Bringing personnel into a program after it starts makes it difficult for
them to grasp the scope of the program and become fully productive. Bring on key personnel
as early as possible in accordance with the staffing plan.  Any other new personnel should be
phased in incrementally so as not to interfere with total team productivity and cohesion.

• Scheduling for an integrated government/contractor team must involve both government and
contractor management.

• On a program involving new processes, equipment, and methodologies, development
personnel must be allowed time to come up to speed on goals, tasks, and associated start and
completion dates.  This can be accomplished by providing each team member with inchstone
schedules that are planned and staffed 60 days in advance.  These should include all known
leaves, vacations, training, holidays, commander’s calls, etc.

• To avoid a series of nontrivial changes during software analysis and design, iron out Interface
Requirement Agreements (IRAs) as early as possible.  Interfaces can be identified as a technical
risk.  Organize a Risk Management Working Group to oversee IRAs and a risk mitigation
officer to monitor and plan risk mitigation.

• Make sure task configuration management (CM) personnel are briefed on CM policies,
procedures, and the possible consequences of not following them.  CM policies and procedures
should be included in the SDP and distributed as required reading to all task members.



7-20

Chapter 7: Acquisition Planning                                                                              GSAM Version 3.0

• The configuration requirements, implementation, and maintenance for a local area network
(LAN) requires planning and dedicated, specialized personnel.  Therefore, upfront analysis
and planning to determine LAN requirements is necessary with special consideration paid to
how much and what type of terminal equipment will be connected to the LAN.  Include
communications specialists in your staffing plan.

• Adequate identification of hardware and software constraints, connectivity, and supporting
documentation must be planned for prior to starting a task.  Proper planning of staffing and
tools for each task lessens the impact on productivity.

• Government staffing must be coordinated between the task leader and his/her government
counterpart to ensure appropriate skills are provided at proper times in the life cycle.  Have
each task leader identify a staffing strategy.  The technical quality assurance evaluator (TQAE)
should then review this strategy and plan a similar strategy in coordination with the task
leader.

• An external interface process should be documented in a separate appendix to the SDP.
• Although not usually scheduled for delivery, prototype development requires a good support

environment.  This includes the hardware environment and regular system backup.  These
elements, often taken for granted, should be routinely provided in development deliverables.

• Documentation must be available from the onset of any new engineering endeavor.  Prototyping
language manuals and texts will pay for themselves almost immediately after acquisition, as
they eliminate the time-consuming trial and error approach to learning.

7.5  Program Decomposition

In Chapter 9, Engineering Software-Intensive Systems, you will learn that one reason for employing
the principles of software engineering is that it provides a method for handling complexity.  This
is accomplished by applying the old adage of divide-and-conquer.  Major software developments
must be decomposed (broken down into manageable parts) to enable realistic estimates of size,
time, and manpower.  Methods of decomposition differ depending on program objectives, which
may be based on either function or design.  Functional decomposition divides the program into
basic components from a user’s perspective; whereas, design decomposition divides it into
software components or modules.  [BENNATAN92]  Your first layer of decomposition is at the
system level with the SSS.  From that the WBS is developed.

7.5.1  System/Segment Specification (SSS)

The most important and critical aspect of system development is to nail down function-level
system requirements before they are allocated to either hardware or software components.  For
weapons systems, the SSS, containing general software requirements, is an initial method of
decomposition at the system level.  In the SSS, system requirements are defined in quantifiable,
measurable, and testable terms.  [DSMC90]  The SSS is then the basis for further decomposition
into the WBS.



7-21

Chapter 7: Acquisition Planning                                                                              GSAM Version 3.0

7.5.2  Work Breakdown Structure (WBS)

A WBS should be developed for each major acquisition program (or major modifications thereof),
and for each individual contract within the program.  The WBS, in its various forms, can serve as
a useful tool for planning, control, and communication throughout your program.  The WBS, if
properly written, defines the program’s total objectives and relates the many work efforts to the
overall system.  The WBS is the foundation for:

• Program and technical planning,
• Technical description of program pieces,
• Cost estimation and budget formulation,
• Schedule definition,
• Statements of Work and specification of contract line items,
• Progress status reporting and problem analysis,
• Tracking of technical changes [Engineering Change Proposals (ECPs)], and
• Engineering management.

7.5.2.1  WBS Interrelationships

The summary WBS defines the upper three levels of a system.  The project summary WBS is
tailored to a specific program or project.  The contract WBS defines the complete work effort for
a particular contract or other procurement action.  It contains applicable portions of the project
summary WBS plus the extension of any levels necessary for planning and control.  The
interrelationship between WBSs is illustrated in Figure 7-2.

Surface
Vehicle

Space

Ship

Ordnance

Missile

Electronics

Aircraft
System

Contract
WBS

Project
Summary

WBS

Each procurement
action requires a

contract WBS

P
ro

je
ct

 W
B

S
MIL-STD-881
SUMMARY

WBSs

Figure 7-2.  Interrelationships Among WBS Types



7-22

Chapter 7: Acquisition Planning                                                                              GSAM Version 3.0

From the project summary WBS, individual contract (or development organization) WBSs can
then be developed.  The program office can initiate preliminary contract WBSs before contract
award that contain contract line items, configuration items, contract specifications, and industry
responses to the draft RFP.  The initial project summary WBS and first contract WBS must be
established at the award of the first development contract.  As the program progresses and
additional contracts are let, the project WBS must be extended to all levels it addresses, but the
basic structure should remain unchanged.  A single project WBS, with element nomenclature
and definitions, should be maintained throughout the acquisition process to ensure traceability.
The components of the WBS are:

• Prime mission product.  The prime mission product element is the hardware and software
used to accomplish the primary mission of a defense materiel item.  It includes all integration,
assembly, test, and checkout, as well as, all the technical and management activities associated
with individual hardware and software items.

• WBS element.  This describes a discrete portion of a WBS that is either an identifiable item
of hardware, a set of data, or a service.  An element can consist of one or many work packages.

• Subsystem.  This refers to all the hardware and software components of a subsystem.
• Software component.  This is all the software integral to any specific subsystem specification

and can be an aggregate of application and system software [discussed below].  (It excludes
software specifically designed and developed for system test and evaluation.)

• Work package.  This represents the work to be performed at the lowest WBS level where
work performance is managed.  Developed by the contractor, it defines the work, how its
accomplishment is measured, how it is tied to a schedule, and where responsibility lies for
production of the operating unit.  Interrelating the who, what, when, and how much for any
task effort, it is the heart of management control and provides visibility at designated levels.
Program performance can be measured and controlled by monitoring reports on the technical
and schedule aspects of each work package or combination of work packages.

7.5.2.2  Prime Mission Product Summary WBS

The prime mission product summary WBS identifies the upper three levels of a WBS and defines
the top-level software elements and their placement in the structure.  The prime mission product
summary WBS is used to develop the software project summary WBS.

7.5.2.3  Software Project Summary WBS

A software project summary WBS is usually the result of the systems engineering efforts conducted
during Concept Exploration.  At this time, the most suitable summary WBS software items are
considered that best satisfy operational needs.  The preliminary software summary WBS should
not be constraining, but evolves and is tailored as program objectives stabilize.  Developers
should be encouraged to propose changes to the preliminary project summary through creative,
alternative development options.  The software project summary WBS elements are:



7-23

Chapter 7: Acquisition Planning                                                                              GSAM Version 3.0

• Software WBS elements.  Software WBS elements are described generically and apply to
each type of defense system.  The associated activities and deliverables for which cost data
are collected are listed with each software WBS description.

• Application software.  Application software is specifically developed for the functional use
of a computer system.  Examples are battle management, weapons control, and data base
management software.  This element refers to all the effort required to design, develop,
integrate, and checkout prime mission product applications, builds, and CSCIs.  It excludes
all software integral to any specific hardware subsystem specification.  Figure 7-3 illustrates
the breakdown of both application and system software CSCIs.

• System software.  System (or support) software is designed for a specific software system, or
family of software systems, to facilitate its (and its associated applications; i.e., operating
systems, compilers, and utilities) development, operation, and maintenance.  It also includes
all the effort required to design, develop, integrate, and checkout the system software, including
all software developed to support any prime mission product software development.  It can
also include multiple builds.



7-24

Chapter 7: Acquisition Planning                                                                              GSAM Version 3.0

Figure 7-3.  Interrelationships Among WBS Types

7.5.2.4  Software Contract WBS

Only one preliminary software contract WBS is used for each RFP and its ensuing contract
WBS.  The program office structures a preliminary contract WBS by selecting elements of the
approved project summary WBS that apply to that contract.  It then organizes them into a
framework supporting the approved project summary WBS and development objectives. Software
subsystems may then be extended to the next lower level.  Traceable summarization of individual
contract WBS(s) into the approved project summary WBS are maintained.  The contract WBS
does not need to completely mirror the project WBS.  For contracting issues (e.g., cost accounting)
a WBS different from the project tracking WBS may be necessary.  The functional integration of
the project summary WBS with the contract WBS is illustrated in Figure 7-4.

Build
(1..N)

CSCI #1

CSCI #2

CSCI #3

CSCI to CSCI
Integration &

Check out

Coding &
Design Entity

Testing
DesignRequirements

Analysis

Design Entity
Integration &

Testing
CSCI

Testing
SPCR

Resolution

Design Entity
Re-integration

& Testing

Recoding &
Design Entity

Testing
Redesign

LL SOFTWARE WBS ELEMENTS

Subsystem
#N

PMP
Application
Software

AIRCRAFT
SYSTEM

Hardware
Component

Prime Mission
Product (PMP)

Subsystem
#N + 1

Software
Component

PMP
System

Software

Integration,
Assembly, Test

& Checkout

LL LL

LL

LL = Lower Lever Extension
CSCI = Computer Software Configuration Item
SPCR = Software Problem Change Report
Design Entities = Computer Software Components,
                            Objects, Modules, etc.



7-25

Chapter 7: Acquisition Planning                                                                              GSAM Version 3.0

Figure 7-4.  Software Project and Contract WBS Functional Integration

In their proposals, or during source selection, offerors are encouraged suggest changes to certain
elements to make the contract WBS more effective.  These changes are approved by the government
program manager.  The final contract WBS, based on the contractor’s proposal, suggested changes,
and contract negotiations, becomes the basis for a more detailed definition necessary to manage
the effort.  The contractor must also prepare program-specific terminology and definitions for
extended elements of the contract WBS.

A couple of points must be emphasized.  First, the contract WBS provides the link between the
contracted effort and the overall program to include description of the interfaces necessary to
integrate the software of one contractor with that of other contractors or agencies.  This is to
ensure that all software being developed is compatible when integrated with other software and
hardware at the next higher level of integration.  Second, be careful to select WBS elements that
permit structuring of budgets and tracking of costs to whatever level is necessary for control.

You can accomplish this by assigning job orders (or customer orders) to the cost account level
for in-house efforts and by structuring line items (contract data requirements list (CDRLs)) or
work assignments [discussed in Chapter 8, Contracting for Success] in accordance with the
WBS.  Usually, a cost account is established at the lowest level of the contract WBS where costs
are recorded and compared with budgeted costs.  This cost account (WBS element) is a natural
control point for cost/schedule planning as it is the responsibility of a single organizational element.
Contractors should maintain records to the work package level so the Government has visibility
to the cost account level.  Ideally, you and the contractor will agree on a WBS which is integral
to [and not disruptive of] their development process that they would normally use for internal
tracking and management.

k

ka

Te
st

M
F

G

C
o

m
p

a
ny

E
ng

in
e

er
in

g

D
e

si
gn

Mechanical
Design

Analytical
Design

Drafting and
Checking

Antenna Transmitter Receiver

Radar Head Up
Display

Fire Control
Software

Navigation
Aids

Fire
Control

Communication
and Identification

Airframe

Air Vehicle

A/C System

Avionics

P
ro

je
ct

 S
um

m
a

ry
W

B
S

C
o

nt
ra

ct
 W

B
S

Cost
Account

Cost
Account

Functional
Management
Level

1 2 3 4

Level 1

Level 2

Level 3

Level 4

Level 5

Cost
Account



7-26

Chapter 7: Acquisition Planning                                                                              GSAM Version 3.0

7.5.2.5  Software Project WBS

The software program/project office prepares the software project WBS by compiling the elements
of the extended contract WBS(s) with the project summary WBS.  The program office then
incorporates the levels of the extended contract WBS(s) it considers necessary for program
management and other related requirements into the project WBS.  This compilation occurs as
successive extensions of the individual contract WBS(s) are identified throughout the program.
The formal project WBS is completed prior to initiation of the system integration and test phase.
A 3-level project summary WBS for the F-22 is illustrated in Figure 7-5.

F-22 SOFTWARE

Support Data Systems

Mission Support Elements
Computer Resources

Support Systems

Peculiar
Support EquipmentS

up
po

rt
 S

ys
te

m
s

Vehicle Management
System Software

Utilities and
Subsystems Software

Avionics
System Software

A
ir

 V
eh

ic
le

S
of

tw
a

re

Pi lot Training
System Software

Maintenance Training
Systems Software

Training Management
System/ Training System
Support Center Software

Computer-based Training
System Software

Tr
ai

n
in

g
S

ys
te

m
 S

o
ft

w
ar

e

Figure 7-5.  F-22 3-level WBS

The Integrated Master Plan/Integrated Master Schedule concept that evolved on the ATF program
is one approach to force contractors to perform detailed, step-by-step planning and report progress
and costs against their plan.  If contractors are held accountable to deliver functions rather than
configuration items, they cannot cheat on software performance and integration because delivering
the hardware alone will not trigger payment.  This is something of an oversimplification, but the
basic concept of requiring that contractors deliver integrated system capabilities and minimizing
progress payments for arrival on dock of a system capability, rather than bits and pieces, is highly
recommended.



7-27

Chapter 7: Acquisition Planning                                                                              GSAM Version 3.0

WARNING TO WEAPON SYSTEM PROGRAMS!  The lack of a software WBS has
been the Achilles Heel of many weapon programs.  Do not be caught without meaningful
insight into your highest risk area.

7.6  Market Analysis

The Defense Standards Improvement Council (DSIC) states that market analysis is key to meeting
the spirit and letter of Secretary Perry’s June 1994 Memo.  [See Chapter 4, DoD Software
Acquisition Environment.]  You should perform a market analysis to determine if commercial
products are available that meet your identified need because current MilSpec reforms make
aggressive market analysis imperative.

Through comprehensive market analysis, you will be able to ascertain if adequate commercial
product alternatives exist and to identify satisfactory replacements for software MilSpecs and
MilStds.  If your market analysis illustrates that certain software MilSpecs or -Stds can meet your
identified need, your analysis results can serve as the basis for a waiver request to the Milestone
Decision Authority (MDA), or you can cite the MilSpecs or MilStds as guides without mandating
that they be literally followed.

Whether your program is a new-start, an on-going, or one in post-deployment software support
(PDSS), you must perform a market analysis prior to every requirements definition effort.  The
data you collect during the market survey are then used to reassess your original requirement.
You must determine whether a modification to the original requirement will result in greater
overall value to the Government in terms of cost, performance, availability, reliability — or other
risk drivers you have identified. You market survey should also cover maintenance and support
data, test results, and user satisfaction analyses.  These data are used in developing your support
strategy and the TEMP.  [The SD-5, “Market Analysis for Nondevelopmental Items,” Assistant
Secretary of Defense (Economic Security) [OASD/(ES)] describes a generic approach for market
analysis.  A training program is also available from OASD/(ES).  See Volume 2, Appendix A for
a point of contact.]

7.6.1  Software Product Definition and Decomposition

Software product definition and decomposition will be complete once you have accomplished
the basic planning process discussed above.  Your product will be identified and decomposed, at
least initially, through the SSS and the various WBSs.  However, it may be necessary to modify or
adapt these items to your software cost, schedule, resources, and support estimate preparation
requirements.



7-28

Chapter 7: Acquisition Planning                                                                              GSAM Version 3.0

7.7  Baseline Estimates

The basic software estimating process mirrors the strategic planning process and builds on and
supports many of the other planning steps.  It consists in defining what will be estimated, breaking
the total effort into appropriate lower-level elements, determining the scope (size) of each element,
assessing the software development environment, and performing assessments of alternatives
and risk factors.  Once these elements have been quantified, evaluated, and boundaries placed
around their values, baseline estimates of cost, schedule, resources, and support can be determined
and assessed.  Table 7-1 (from Kile’s A Process View of Software Estimation) outlines the steps
necessary for bid preparation.  Although it names the steps and presents the view differently than
discussed here, the basic process is the same.  [KILE91]

Phase Major Activity Specific Products

1.  Design Baseline Define a point of sufficient precision to identify the number
of CSCIs and the required functionality of each.

List of CSCIs, functionality,
and similar completed
projects or CSCIs.

2.  Size Baseline Using the products from the Design phase, define the
expected size for each CSCI.

List of CSCIs with appropriate
size information.

3.  Environmental
Baseline

Using the products from the two previous phases,
determine the environmental characteristics required and
available to perform the job.

List of software cost model
parameters and their initial
settings along with a written
rationale for each.

4.  Software Baseline
Estimate

Using the size and environment products, make a software
cost model run (using whatever model best satisfies the
organization's needs).

Output from the software cost
model showing schedule and
cost information.

5.  Project Baseline Using the output from the Software Baseline Estimate
phase, add those elements not included in the particular
software cost model (each model has a specific set of
items not included in the estimate) and subtract those
elements excluded from this project.

A complete estimate of the
costs and schedule for the
software portion of the
project.

6.  Risk Analysis Determine the cost/schedule risk associated with the
Project Estimate. Make changes to the size or environment
products to perform what-if analyses.  Determine the size
and/or environment setting required to validate the final
software bid.

Risk assessment, risk graphs,
risk memorandum with
Parameter-by-Parameter risk
explanations.

7.  Project Bid Perform analysis of the Project Estimate, considering such
factors as expected competition, type of contract,
budgetary or personnel constraints, risk analysis, etc.
Convert labor and other direct charge (ODC) estimates into
contractor's price and determine the Project Bid.

Project Bid.

8.  Dynamic Cost
Projection

Using existing known environment and size information,
produce a revised Project Estimate and determine the
remaining costs and schedule-to-complete for the on-going
project.

Cost-to Complete, Schedule-
to-Complete, Size-to-Cost.

Table 7-1.  The Software Estimation Process



7-29

Chapter 7: Acquisition Planning                                                                              GSAM Version 3.0

The software estimating process is an interactive, dynamic process.  As program requirements,
the development environment, and/or the program funding profile change, re-estimation of the
effort/cost and schedule must be performed.  Contractor Engineering Change Proposals (ECPs)
must also be evaluated for their affect on both development and support costs, as well as schedule.
Funding constraints typically result in program delays which can, in turn, increase cost.

To develop master schedules, acquisition strategies, and preliminary budgets, a preliminary cost/
schedule estimate reflecting the program baseline needs to be developed using preliminary size
and environmental assessments.  This baseline estimate provides a starting point from which
alternatives may be compared and changes tracked.  Throughout development, as assessments
are updated to reflect current conditions, cost/schedule estimates must be updated to support
decision making at all levels.  A cost track from the baseline estimate to each update, as well as
clear, understandable documentation substantiates the need for programmatic change.  [A rule of
thumb for a well-documented estimate is that it is verified by a second party.]  The goodness of
an estimate depends on whether factor assessments are realistic, appropriate risk is considered,
and estimating methodologies substantiate reasonableness of the cost estimate.  Significant cost
and schedule drivers should be re-estimated and documented using a secondary methodology as
a confidence check.  A minimal confidence (or sanity) check, is performed on significant cost
elements to assure that the estimation is within an acceptable range of general knowledge (e.g.,
sources lines-of-code (SLOC)/staff month is within range of similar software programs).

NOTE:  An overview of several estimating techniques/methodologies is found in Chapter
13, Software Estimation, Measurement, and Metrics.

The preliminary estimate becomes the baseline from which the process of updating your estimates
proceeds, and continues throughout the development life cycle.  As program knowledge increases,
metrics data are collected and analyzed, and your estimates are updated, your cost and schedule
estimates will become increasingly more accurate.  This approach does not omit or conflict with
longer term acquisition strategies such as systematic reuse and families of product-lines and
systems.  Long term, wide scope acquisition planning is necessary to ensure a cost-effective
acquisition, especially when such requirements may contradict the profit motives of individual
development contractors.

Once an initial cost and schedule estimate has been developed, significant effort is required to
analyze and understand the estimate before accepting it as a formal part of your strategic plan.
The analysis of your original estimate serves four purposes:  (1) to make sure the estimate is
thoroughly understood, (2) to insure that the estimate is as accurate as possible; (3) to provide a
baseline upon which to evaluate programmatic alternatives (e.g., trade studies, software capability
assessments, tradeoff analyses, and development methodologies), and (4) to conduct risk analyses.
The original estimate analysis includes answering the following:

• Does the estimate make sense?
• Are estimated schedules, costs, and effort consistent with prior experience?
• Does the estimated effort, cost, and schedule meet programmatic requirements?
• Are required productivity levels reasonable?
• Have all relevant costs been included?
• Have any cost elements accidentally been included more than once because different estimating

techniques were used for different WBS elements?



7-30

Chapter 7: Acquisition Planning                                                                              GSAM Version 3.0

7.7.1  Estimation Accuracy

The accuracy of your cost estimate directly relates to the quality of the information upon which it
is based.  The exactness of this data increases as a function of time and the stability of requirements.
During the planning phase of a program, requirement uncertainties often result in questionable
estimates.  As time progresses, the fidelity of the information improves along with the accuracy
of the estimates.  [MARCINIAK90]  The quality of the information is also dependent on the skill
and experience of your analysts/engineers who gather and analyze the input information.  The
quality of the estimate is, similarly, dependent on their skills and experience in software cost and
schedule estimating, the specific estimating methods and models used, as well as their familiarity
with the software system being estimated.

Using a second (or possibly third) estimating technique or model to identify these potential
problems is a proven, effective way to compare estimation results (after normalizing results for
equivalent content).  To correct any identified problems, your cost analyst must change model
input settings [not input data] to reflect a better understanding of the information required by the
model and/or seek additional clarifying data upon which to base changes in model inputs.  If
your model’s estimated schedule exceeds programmatic requirements, your analyst may need to
turn-on a schedule constraint variable within the model.  If the staffing profile predicted by the
model is inconsistent with the development plan, a staffing constraint variable may need to be
adjusted.  After several iterations (under a variety of assumptions and with varying parameter
settings) your analyst should arrive at an estimate that is both credible and reasonably accurate.
This estimate should also include a risk assessment.  At this point, the estimate may consist of a
range of estimates that reflect different assumptions and probabilities of success rather than a
single-point-estimate.  You should review these estimates and risk assessments and provide
additional guidance for further analysis and/or approval.

Once the estimate is as accurate as possible using known information, it can be used to perform
sensitivity analyses, risk analyses, and what-if exercises by varying model inputs based on
expectations or alternative sets of assumptions.  If there is uncertainty about the size measurement
(or other factors influencing the cost or schedule), high and low end estimates of the expected
range should be developed.  These studies can be used to identify risk areas and to develop
contingency plans.  If there are constraints on your budget or schedule, your estimate should be
derived taking these limitations into account.  This will provide your baseline estimate as to the
viability of developing the software within identified constraints.  If it appears that either cost,
schedule, or resource limitations can not be met, other programmatic options must be examined
during planning, rather than waiting until these constraints have been violated.  It is extremely
important that you do not change estimate parameters to meet programmatic restrictions.  This
will merely invalidate your estimate, your program planning activities, and greatly reduce your
likelihood for program success.



7-31

Chapter 7: Acquisition Planning                                                                              GSAM Version 3.0

CAUTION!  Beware of “Rosy Scenario” (also known as “Optimism”).  Program managers
are inclined to manipulate the input variables to software estimating models to assure
an “acceptable” outcome in terms of estimated cost and schedule.  One example is to
understate the size of the program, while another typical situation is to overstate the
capabilities and/or resources (tools and practices) of the development team.  Time and
again this has led to broken programs, delays, restarts, loss of confidence, all around
embarrassment, and on occasion — program cancellations. Well-documented estimates
using reasonable, but conservative, assumptions will bring you accolades in the long
run, even if there are grimaces and groans in the near term about the predicted cost and
schedules taking too long.

NOTE:  All analysis and estimation to this point have been done by the acquirer. This
analysis may have NO relationship to a similar analysis performed by the developer.
The analysis should provide the acquirer with a rough order of magnitude estimate of
what the development will take in terms of cost and schedule.  However, it is the
developer’s estimate of cost and schedule that ultimately count!

7.7.1.1  Program Estimate Selection

After the analysis of the estimate is complete, it is up to you to select the cost and schedule
estimate baselines which become part of your Strategic Plan.  Ideally, this is performed in
cooperation with your development team manager as an on-going activity in your program
management process.  This baseline must be periodically updated to reflect changes in the Strategic
Plan as more is known about your program.

The key element in selecting the baseline estimate is the level of cost and schedule risk you are
willing to accept.  You need to understand that, although it may be possible to accomplish your
program within the cost and schedule to which you have committed, based on historical examples
there may be only a 10% probability you will succeed.  It is only through realistic estimates and
early planning that this probability can be increased.  Similarly, if the schedule for a software
development is dictated by other mission-critical factors (such as a payload launch date), you
must realize and understand the probability of meeting that schedule.  Once you understand your
probability of success, you can rethink your strategy by planning various incremental efforts to
insure that critically-necessary functionality is completed on time.  Other noncritical functionality
may be deferred to later development stages, or if necessary — omitted completely.  Software
estimating models (used in concert with independent risk analysis techniques) should be used in
assessing the critical cost and schedule risks associated with changes in your program.

7.8  Continuous Program Planning

The final and most challenging step in planning is for you to constantly re-implement the planning
process throughout the life of your program.  Budget cuts, personnel cuts, short schedules,
incessantly changing requirements, and the development environment force you to continuously
re-evaluate your estimates.  To ensure successful program completion, you need to update your
Acquisition Plan.  Figure 7-6 illustrates how planning is a continuous, iterative process.



7-32

Chapter 7: Acquisition Planning                                                                              GSAM Version 3.0

Figure 7-6.   Iterative Software Planning Process  [HUMPHREY89]

Remember, the requirement to prepare software cost and schedule projections does not end.
The baseline estimate must be updated to reflect changes in your program environment, your
increased program understanding, and the actual metric data being collected.  Similarly, cost and
schedule impacts of proposed and unforeseen changes can be quantitatively evaluated using
estimating models and your baseline estimate.  These may not answer all the questions you have
about what is happening in your program, but they will provide you with a solid starting point
from which you can direct your questions.

Software estimation (and indeed software development) is still an art practiced with varying sets
of standard procedures, tools, and methods.  Also, there are many unknown and dynamic variables
(i.e., human, technical, and political) in the development process that affect the software effort.
For example, requirements are frequently added or changed well into the software testing phase.
Because requirements frequently change, there is an axiom in the cost analysis community that
states:  “original estimates are never correct because we never build what was originally
estimated.”  Also, initial estimates of software size are typically based on limited information
and are often driven by optimistic, rosy scenario, success-oriented influences.  Software cost and
schedule estimates also fall-short because the analyst performing the estimate is unfamiliar with
either the estimating model(s) being used or the specific details of the program — or both.  As a
result, estimating the cost, effort, and schedule of software development is a necessary but inexact
science.  Software program estimates can be improved, however, by using a systematic, disciplined
estimation procedures.

Initial
Requirements

Program
Commitment

Decompose
Requirements

Derived
Requirements

WBS Estimate
Product Size

SLOC

Develop
Schedule

Estimate
Project

Resources

Program-
mer

Months
Does

Schedule
Meet Need?

Projected
Schedule

Develop
Software

Yes

No

Compare
(Database)

Actuals

Deliver
Product

Estimates



7-33

Chapter 7: Acquisition Planning                                                                              GSAM Version 3.0

7.8.1  Continuous Planning Recommendations

• No one likes to be a slave to schedule, but adherence to schedule promotes program stability
and inhibits requirements creep.  Develop your deliverables around the delivery of a functional
capability and use cost payments as incentives to meet those deliveries.

• If a software development effort begins to sink because of schedule slips, throwing more
people onboard may not help.  In fact, more people can actually cause the program to fall
even farther behind due to added communications and training requirements that decrease
productivity.  Therefore, plan team composition and buildup in the early strategic planning
phases.

• Initially, QUALITY does not stand out like this.  If you do not think quality upfront, you will
pay dearly for its neglect later.

• If you are living with evolutionary requirements, it makes sense to pursue an evolutionary
acquisition strategy.  Develop an acquisition strategy that is flexible, can accommodate
evolutionary change, and deal with risk.

• Software planning is an iterative and continuous process.  Initial estimates must be refreshed
and reflected in updated schedules and resource commitments.

• Monetary reward is a proven incentive for contractors to produce quality software.  Money
might not be everything, but it sure is way ahead of whatever is in second place.

• Software size estimates have traditionally been poor and rank right up there with estimates
on the Gross National Product.  Inaccurate estimates of SLOC have been a major impediment
to accurate software development cost estimates.  Another major impediment has been the
failure to accurately estimate the capability of the development team.

• To make your estimates more accurate, use a combination of estimation techniques.  Of all
the program risks with which you must deal, size estimating will be your biggest planning
problem.  A word of caution is to use well-documented estimates based on conservative
assumptions.

• Use the Mitre Skills Matrix to reduce the team capabilities risk element.
• Identify software support requirements, as well as computer hardware support requirements,

in program budgets and schedules.
• A well-planned measurement program is an investment in successful management and product

quality.
• Performance risk can be reduced by planning for delivery of incremental levels of functionality.
• Use program decomposition and program management automated tools to get a handle on

program complexity.
• When comparing estimates produced by different cost models, make sure they have the same

definitions of environmental input parameters.



7-34

Chapter 7: Acquisition Planning                                                                              GSAM Version 3.0

7.9  Other Planning Considerations

There are several other areas of strategic planning that you must include in your planning process.
These include:

• Use of milestones and baselines to track program progress towards achieving objectives,
• Factoring in the often hidden (but often substantial) cost of software scrap and rework in your

estimates,
• Program budgeting and funding considerations,
• Upfront definition of requirements for software safety and security, and
• Planning for future changes in technology that can impact your development efforts.

7.9.1  Major Milestones and Baselines

Milestones signify major events in the software development process.  The completion of
requirements and design specifications are major milestone events.  Major program milestones
often gain added importance through their linkage to other events, such as budget payments used
as measures of program progress or for determining baselines.  If milestones can be described as
major program events, then baselines can be described as major milestones.  [BENNATAN92]

The IEEE definition of a baseline is “a formally agreed upon specification that serves as the
basis for further development.”  [IEEE87]  Baselines are important in DoD software development
as they indicate critical times when major milestones are finalized.  Baselines also provide
significant and complementary ways to control acquisition programs.  Strategic planning baselines
include:

• Cost/schedule control performance measurement baseline.  This baseline provides the
budgeted cost of work scheduled and is the measure against which schedule and cost variances
are calculated.

• Configuration management baselines.  The software configuration management process is
important in providing support to the baselining of system products, and is central for
controlling the development process.  Baselines that mark the completion of major milestone
activities are formal baselines.  Changes to formal system baselines can directly impact both
cost and schedule.  With formal control, any changes to the baselined system must be approved
by the authority responsible for system integrity as defined in that baseline.  In software
development, there are three formal baselines.

• Functional baseline.  The functional baseline establishes the requirements the system must
satisfy.  With functional baseline establishment, system specifications are placed under control.

• Allocated baseline.  The allocated baseline marks the end of the software analysis phase.
The allocated baseline is established when requirements are allocated to individual software
subsystems.  It captures the linkage between the architecture and software requirements.

• Product baseline.  A product baseline is established when the software system is fully designed,
developed, and tested.  This baseline defines the produced software product, and provides
the framework for modifying the system through defect correction and incorporation of new
requirements.



7-35

Chapter 7: Acquisition Planning                                                                              GSAM Version 3.0

• Acquisition program baseline (APB).  The APB provides quantifiable targets for key
performance, cost, and schedule parameters of an acquisition program throughout the
acquisition process phases.  The APB has two components for each parameter, an objective
and a threshold.  Objectives and thresholds are determined differently for cost, schedule, and
performance.  The user’s Operational Readiness Document (ORD) provides performance
objectives and thresholds.  The ORD also provides the user’s requirement for initial operational
capability (IOC) and full operational capability (FOC) — both of which have schedule
implications.  Cost and schedule objectives and thresholds are developed by your acquisition
team.  [Recommendations for ORD preparation are found in Volume 2, Appendix T.]  APBs
are sequentially refined as we move through the life cycle phases and are submitted at
Milestones I, II, and III.  The APB may be adjusted at milestone approval (or program reviews)
based on changes in requirements and/or on the results of activities taking place in the previous
phase.  The APB can also be adjusted in response to a baseline breach.  Only those performance,
schedule, and cost parameters attributable to the breach, however, can be adjusted.

• Operational performance thresholds are the user’s minimum acceptable requirement for
the system when fielded and are derived directly from the ORD.  (Other performance thresholds
may be added by the Milestone Decision Authority.)  Cost objectives and thresholds should
reflect the independent cost estimate (ICE) for the program to meet performance objectives.
For schedule, the objective is the most likely date for a key event (such as a milestone review,
design review, or the completion of a test activity).

When the operating command identifies an unfulfilled need, they must start working closely
with the developing command and the supporting command in defining system thresholds
(minimally acceptable requirements) and objectives.  This approach recognizes that technology,
funding, or schedule may preclude the developing command (and its contractors) from achieving
each and every objective.  The objectives, if properly integrated into the program, can help the
system designer accommodate P3I.  Thereby, parallel development upgrades can be incorporated
at appropriate procurement stages.  A better understanding of requirements and more effective
teamwork can be achieved while still maintaining acquisition competition.

Program executive officers and senior acquisition executives must establish an atmosphere that
fosters frank program assessments by the development team.  One method is to actively support
realistic realignment of system requirements and schedules during program reviews.  This must
be a strategic part of the iterative process of refining the system by considering technology,
budget, and schedule.  Program baseline documents (e.g., requirements correlation matrices and
system maturity matrices) must mature throughout the evolutionary process and be used as
management tools.  They should reflect the refinement of system requirements as the development
proceeds, provide an audit trail of requirements, and establish the rationale behind subsequent
requirements changes.

During each phase of development, you need to maintain a current estimate of cost, schedule,
and performance parameters.  If the current estimate indicates a threshold breach is anticipated,
or has occurred, they must be reported and acted upon.



7-36

Chapter 7: Acquisition Planning                                                                              GSAM Version 3.0

7.9.2  Program Budgeting and Funding

The Air Force develops its programs through the Planning, Programming, and Budgeting System
(PPBS).  It consists of three parts:

• Planning identifies the threat facing the nation for the next 5-15 years, assesses our capability
to counter it, and recommends forces necessary to defeat it.

• Programming allocates resources for competing requirements within the fiscal and manpower
ceilings imposed by the Congress.  This effort develops a five-year program, i.e., the Program
Objective Memorandum (POM).

• Budgeting provides the initial estimated cost of approved plans and programs and refines
estimated costs as programs are better defined or modified in subsequent POM cycles, budget
estimate submissions (BESs), or the President’s Budget (PB).  [Refer to AFI 65-601, Vol 3,
The Air Force Budget Corporate Process]

As a program manager, your role in the PPBS process is important.  You may not be involved in
the initial planning process, but you are an important player in the software-intensive systems
programmed as a result of this planning.  You must investigate the technology and software
solution recommended to satisfy the planning requirement, and if the solution is not sound, you
must bring that to the attention of all concerned and work to resolve all issues.  These efforts are
critical to the success of your program.  In the budgeting phase, your program’s costs are tied to
the rest of the Air Force’s monetary needs for coming years and your program is prioritized
relative to its importance and the current probability that it will be successfully fielded.  [Refer to
HQ USAF/PE Primer, The Planning, Programming, and Budgeting System, HQ USAF/PE.]  In
the past several years GAO has noted that virtually not one program has received full funding.
As a result, program managers have been forced into the position of having to restructure their
programs “on-the-fly.”  Your challenge in today’s environment is to structure your software
development program to respond readily and aggressively to uncertain funding.  [GAO91]

Field Marshall Erwin Rommel defined success on the battlefield as the ability to be flexible and
adapt to volatile wartime conditions.  He explained that,

“Success comes most readily to the commander whose ideas have not been canalized into any one
fixed channel, but can develop freely from the conditions around him.” [ROMMEL53]

Success in planning for software management is the ability to stick to your plan while having a
plan flexible enough to adapt to changes in the development environment.  The planning continues
throughout the software life cycle and is one of the most crucial activities you must perform as a
manager.



7-37

Chapter 7: Acquisition Planning                                                                              GSAM Version 3.0

7.10  References

[BENNATAN92]  Bennatan, E.M., On Time, Within Budget:  Software Project Management Practices and
Techniques, QED Publishing Group, Boston, 1992

[BORKY91]  Borky, Col John M., communication to SAF/AQK regarding draft AFPAM 63-116, December
11, 1991

[DEMING86]  Deming, W. Edwards, Foreword to M. Walton, The Deming Management Method, Dodd,
Mead & Co., New York, 1986

[DEUTCH93]  Deutch, John, as quoted by John Moore, “CIM Will Play Key Role in NPR Challenge,
Paige Declares,” Federal Computer Week, September 20, 1993

[DSMC89]  Using Commercial Practices in DoD Acquisition:  A Page from Industry’s Playbook, report of
the Defense Systems Management College 1988-89 Military Research Fellows, Fort Belvoir, Virginia,
1989

[DSMC90]  Caro, Lt Col Israel I., et al., Mission Critical Computer Resources Management Guide, Defense
Systems Management College, Fort Belvoir, Virginia, 1990

[EASTERBROOK92]  Easterbrook, Gregg, “Stealth-Creators,” The New Republic, January 6 & 13, 1992
[GAO86]  General Accounting Office, Sergeant York:  Concerns about the Army’s Accelerated Acquisition

Strategy, Report to the Chairman, Committee on Governmental Affairs, United States Senate, GAO/
NSIAD-86-89, May 1986

[GAO91]  “Memorandum: Comments on Successful Acquisition of Computer Dominated Systems and
Major Software Developments,” US Government Accounting Office, Washington, D.C., January 25,
1991

[HUGHES92]  Hughes, David, “Digital Automates F-22 Software Development with Comprehensive
Computerized Network,” Aviation Week & Space Technology, February 10, 1992

[HUMPHREY90]  Humphrey, Watts S., Managing the Software Process, The SEI Series in Software
Engineering, Addison-Wesley Publishing Company, Inc., 1989

[IEEE87]  IEEE Standard 1058.101987, Standard for Software Project Management Plans, Institute of
Electrical and Electronics Engineers, Inc., New York, 1987

[JABOUR91]  Jaybour, Lt Col W. Jay as quoted by Michael A. Dornheim, “Air Force’s Hands-Off Approach
Speeded ATF Testing Programs,” Aviation Week & Space Technology, July 1, 1991

[KEMP94]  Kemp, Dan, “CSC Software Development at Syntex:  A Case Study,” briefing, 1994
[KILE91]  Kile, Maj Raymond L, USAFR, A Process View of Software Estimation, HQ United States Air

Force/C4 Plans and Policy, Washington, D.C., June 1991
[KINDL92]  Kindl, LTC Mark R., Software Quality and Testing:  What DoD Can Learn from Commercial

Practices, US Army Institute for Research in Management Information, Communications, and Computer
Sciences, Georgia Institute of Technology, Atlanta, Georgia, August 31, 1992

[MARCINIAK90]  Marciniak, John J. and Donald J. Reifer, Software Acquisition Management:  Managing
the Acquisition of Custom Software Systems, John Wiley & Sons, Inc., New York, 1990

[MRAZ91]  Mraz, Stephen J., “Face-off Over Tomorrow’s Fighter,” Machine Design, March 7, 1991
[PRESSMAN92]  Pressman, Roger S., Software Engineering:  A Practitioner’s Approach, Third Edition,

McGraw-Hill, Inc., New York, 1992
[REILY92]  Reily, Lucy, “Arms Software Hits Flak:  GAO Targets Pentagon on Costs and Scheduling,”

Washington Technology, August 27, 1992
[RICE91]  Rice, Secretary Donald B., as quoted by Patricia A. Gilmartin, “US Lawmakers Tighten Scrutiny

of B-1B and C-17 Aircraft Programs,” Aviation Week & Space Technology, March 4, 1991
[ROMMEL53]  Rommel, Field Marshall Erwin, B.H. Liddel Hart, ed., The Rommel Papers, Harcourt

Brace & Company, New York, 1953



7-38

Chapter 7: Acquisition Planning                                                                              GSAM Version 3.0

[ROONEY90]  Rooney, Thomas R., as quoted in “ATF Avionics Met Dem/Val Goals, Providing Data for
Flight Tests,” Aviation Week & Space Technology, September 24, 1990

[SCHWARZKOPF88]  Schwarzkopf, GEN H. Norman, “Food for Thought,” How They Fight, 1988
[SUMMERS81]  Summers, COL Harry G., On Strategy:  The Vietnam War in Context, US Army War

College, Carlisle Barracks, Pennsylvania, 1981
[SUN500BC]  Sun Tzu, Samuel Grifford, ed., The Art of War, Oxford University Press, New York, 1969
[VESSEY84]  Vessey, GEN John W., as quoted in the New York Times, July 15, 1984
[WORDEN94]  Worden, Col Simon P. and Lt Col Jess M. Spanoable, “Management on the Fast Track,”

Aerospace America, November 1994


	Chapter 7 Acquisition Planning
	Contents


