Process Tailoring for Software Project Plans
Version 1.04

Process Tailoring for Software Project Plans
Version 1.04

STSC
Process Tailoring for Software

Project Plans

January 1996

Prepared By:

Faye C. Budlong

Paul A. Szulewski

Ralph J. Ganska

Prepared For:

The Process Management Technologies Team
The Software Technology Support Center (STSC)
OO-ALC/TISE
Hill AFB, Utah

ACKNOWLEDGMENT

This report was prepared by The Charles Stark Draper Laboratory, Inc., under Contract F042520-95-C-0245 with the Software Technology Support Center (STSC) of the U.S. Air Force.

Publication of this report does not constitute approval by the U.S. Air Force of the findings or conclusions contained herein. It is published for the exchange and stimulation of ideas.

TABLE OF CONTENTS

Paragraph
Page

1.
INTRODUCTION
1

1.1
Scope
1

1.2
Audience
2

1.3
Introduction to the Report
3

2.
AN ORGANIZATION'S STANDARD SOFTWARE PROCESS:
4

3.
TAILORING THE ORGANIZATION'S STANDARD SOFTWARE PROCESS
6

3.1
Introduction to Tailoring
6

3.2
Identifying Project Characteristics
7

3.3
Choosing and Tailoring the Building Blocks
7

3.3.1
The Tailoring Process
10

3.3.2
Making Tailoring Decisions
11

3.4
Documenting the Project’s Defined Software Process
15

3.4.1
Documenting the Tailoring Decisions in a Compliance Agreement
15

3.4.2
Documenting the Project’s Defined Software Process in a Plan
16

3.4.2.1
Organizing the Work
16

3.4.2.2
Documenting the Schedule
17

3.4.2.3
Developing the Activity Network
18

3.4.2.4
Completing the Software Development Plan
18

4.
TAILORING AN ORGANIZATION’S STANDARD SOFTWARE PROCESS – AN EXAMPLE SOFTWARE PROJECT
22

4.1
Introduction to the Example
22

4.1.1
Project Scenario
22

4.1.2
Introduction to the XDEVEL Standard Software Process
24

4.2
Identifying Project Characteristics
25

4.3
Choosing and Tailoring the Building Blocks
28

4.4
Documenting the Project’s Defined Software Process
30

4.4.1
Documenting the Tailoring Decisions
30

4.4.2
Incorporating the Project’s Defined Software Process in a Plan
31

4.4.2.1
Organizing the Work
31

4.4.2.2
Documenting the Schedule
31

4.4.2.3
Developing the Activity Network
31

4.4.2.4
Completing the Software Development Plan
31

5.
CONCLUSIONS
35

LIST OF REFERENCES
36

LIST OF ACRONYMS
37

GLOSSARY
39

LIST OF APPENDICES

Appendix
Page

A.
PROCESS & PLANNING TOOL SUPPORT
41

LIST OF FIGURES

Figure
Page

1-1
Organizational process to project performance transitions.
1

2-1
Example building blocks.
4

3-1
Tailoring an organization’s standard software process (overview).
7

3-2
Tailoring a process for a software project.
10

3-3
Simplified example software WBS.
17

3-4
Example software schedule with WBS elements.
18

3-5
Example activity network.
19

4-1
XDEVEL’s building blocks.
28

4-2
GPS Interface and Communications Project WBS.
32

4-3
GPS Interface and Communications Project Gantt chart.
33

4-4
GPS Interface and Communications Project activity network.
34

LIST OF TABLES

Table
Page

3-1
Sample project characteristics
8

3-2
Example tailoring guidance.
11

3-3
Example SDP of Contents.
20

4-1
Project characteristics for GPS example.
26

4-2
Candidate XDEVEL building blocks to be tailored.
29

A-1
Integrated software process and project management tools.
42

1.
INTRODUCTION

1.1
Scope

The definition of a software process is embodied in how a software organization does business; that is, how management and engineering practices are implemented to support software development and/or maintenance. This view of software process assumes that an organization has a set of building blocks that defines the general way it does business and that some subset of those building blocks is implemented for each software project.

The building blocks that define how a software organization does business are called the organization's standard software process. The subset of the building blocks tailored to and implemented for each project is referred to as the project's defined software process. Then, the project's software development plan is developed based on the project's defined software process and used to manage the software project.

Software project requirements (both technical and management requirements) drive the specifics of tailoring the organization's standard software process, documenting the software development plan, and managing the project according to the plan. Figure 1-1 is a simplified diagram that shows the transitions from the organization's standard software process to software project implementation and where feedback can be used to support project and process improvement.

Figure 1-1. Organizational process to project performance transitions.

This report presents a brief introduction to the concept of an organization's standard software process and then focuses on tailoring that process for a specific project, i.e., creating the project's defined software process. A method for documenting the project's defined software process in a software development plan also is discussed. Together, these concepts provide the foundation to fulfill the process tailoring and project planning activities associated with Level 3 of the Software Engineering Institute (SEI) developed software Capability Maturity Model (CMM) [PAUL93].

The scope of the report is focused specifically on tailoring an organization's standard software process to the needs of a project, documenting the tailoring as the project's defined software process, and finally documenting the project's defined software process in a software development plan. The concepts presented are based on experience and are adaptable to many different types of organizations.

1.2
Audience

This report was prepared for organizations that need to tailor a standard software process to the needs of specific software projects. Specifically, this includes software organizations that are planning to fulfill the requirements of the SEI CMM Level 3.
 Other organizations that have had limited successes implementing a "standard" software process on diverse software projects also should benefit from the report.

The primary audience for this report is as follows:

a.
Members of a Software Engineering Process Group (SEPG) (or other Software Process Improvement (SPI) contributors) in a Level 2 organization who need to understand how to tailor the organization's standard software process to the needs of each software project, specifically:

1.
Contributors responsible for building the organization's standard software process.

2.
Contributors responsible for developing the tailoring rules that will help members of the organization prepare a project's defined software process from the organization's standard software process.

3.
Contributors who need to define how to document the project's defined software process in a software development plan.

b.
All contributors who need to understand the process-specific features of the Integrated Software Management (ISM) KPA of the CMM regardless of the organization's current software process maturity.

The second major audience for this report includes:

a.
The software project managers who need to tailor the organization's standard software process for their projects and document the tailored process in software development plans.

b.
The organization's managers who need to approve defined (tailored) software processes for specific projects.

1.3
Introduction to the Report

This report has been developed to address the most obvious issues that arise when tailoring a set of building blocks to the unique aspects of a software project. The report discusses the concept of software processes at the organization and project levels and how these processes are implemented through software development plans. An example is used to show how an organization's standard software process can be tailored and implemented as a project’s defined software process. The report presents information on available automated tool support for documenting a project's defined software process and providing inputs to a project plan based on the chosen software process. Specifically, the following topics are addressed:

a.
Section 2 provides a brief introduction to an organization's standard software process; why the building blocks that comprise the process are needed, how they are used, and items they could contain.

b.
Section 3 discusses how to tailor the organization's standard software process to the needs of a specific software project.

c.
Section 4 presents an example of tailoring an organization’s standard software process to the needs of a specific project.

d.
Section 5 contains conclusions.

e.
Appendix A discusses automated tool support for describing a project's defined software process and implementing that process in the software development plan.

2.
AN ORGANIZATION'S STANDARD SOFTWARE PROCESS:
AN OVERVIEW

An organization's standard software process documents "the way it does business." It is a compendium of information that describes how a software organization plans for, manages, builds, qualifies, and maintains software. In other words, the organization's standard software process consists of a number of building blocks that are used in different ways to support software projects.

The organization's standard software process may be described in a number of ways, e.g., through Data and Control Flow Diagrams (DFDs and CFDs), flow charts, etc. Most often, the organization's standard software process is a book or notebook arranged in topic areas with text descriptions of processes and procedures, lists of standard tools, and some form of process diagrams to describe the way the organization operates using these building blocks. Figure 2-1 shows an organization's standard software process as an inventory of building blocks (or process pieces and support tools) that needs to be assembled and fitted to fulfill each project's needs. The organization's software process could be structured by topic area (e.g., all processes dealing with project management, product engineering, testing, etc., could be grouped together), it could be a simple inventory with the building blocks listed in alphabetical or numerical order, or it could take some other form. The goal of the organization's standard software process is to document how the organization does business; the form is not really important.

Figure 2-1. Example building blocks.

The organization's standard software process is not magic. It's not simply an oversized set of instructions to do the impossible or an imposing tome of unreadable, incomprehensible diagrams. It's a basic description of how an organization does business. Ideally, it is a living document that exists both in hard copy and easily accessible on-line formats.

For example, the organization's standard software process contains Software Configuration Management (SCM) processes and practices. Most often, the processes and practices are supported with procedures and tools. The procedures and tools need to be consistent with the processes and practices; they are part of the organization's software process building blocks.

Each organization needs to develop and maintain building blocks that fit its particular requirements. Although the CMM provides goals that need to be fulfilled and activities that need to be performed to prove conformance with the requirements of a given CMM level, the contents of the organization's standard software process do not need to be limited to the requirements of the CMM nor organized to reflect the organization of the CMM’s KPAs. The organization's standard software process should contain the processes and practices required to fulfill the organization's software-related technical and business goals.

Usually, the contents of an organization's standard software process are chosen to cover the needs of software projects considered to be large or complex for that organization; the organization's standard software process contains the building blocks that will cover the needs for the worst-case software project. Examples of sets of practices within the organization's standard software process are:

a.
Software engineering, e.g., requirements management, requirements engineering and design, software life cycles, development methodologies.

b.
Software engineering support techniques/disciplines, e.g., Software Quality Assurance (SQA), SCM, product inspections (or peer reviews).

c.
Software management, e.g., software development planning, ongoing project management, software metrics, software cost estimation techniques, multi-disciplinary team coordination.

The development of an organization's standard software process is not trivial. Many organizations spend three or more years developing a standard software process, and the development and approval effort is just the beginning of software process improvement. Software process improvement can only happen when the processes and practices are institutionalized and used routinely throughout the organization.

3.
TAILORING THE ORGANIZATION'S STANDARD SOFTWARE PROCESS

3.1
Introduction to Tailoring

Software projects have unique requirements. The products (or modifications to products) that result from a project generally are unique. Traditionally, the unique aspects of a project rather than a common set of building blocks has been the driving force behind software development planning. This focus often translates to using different sometimes conflicting processes for projects within a single organization, which means that the lessons learned in how to "do business better" for a given project can be very difficult to apply to new projects.

One of the factors that supports developing and using an organization's standard software process is that using common building blocks for all projects within the organization will help make planning and management easier through supporting the use of materials, methods, lessons learned, etc., from previous projects. Still, given the unique nature of most software projects, some tailoring needs to be made to the organization's standard software process to apply it to almost any new project. The steps used to tailor the organization's standard software process to the needs of a specific project will be somewhat different for each organization. In general, however, the following concepts can be used to help think through how to develop a project's defined software process.

New software project definitions often include the following information:

a.
Project goals.

b.
Project technical work requirements.

c.
Performance requirements and standards.

This information is combined with the organization's inputs and external inputs, such as:

a.
The organization's business goals,

b.
The organization's standard software process,

c.
Rules for tailoring the organization's standard software process,

d.
Acquisition regulations, and

e.
The acquisition organization's management philosophy,

to develop the project's defined software process. In its simplest form, tailoring an organization's standard software process to a specific software project can be thought of as shown in Figure 3-1.

Figure 3-1. Tailoring an organization’s standard software process (overview).

Previous work in tailoring processes and standards has identified “axes for tailoring” organization's standard software processes [GINS95] that include formality, accuracy, scope, precision, and complexity and “key areas to tailor” for DOD-STD-2167A [MAIB94] that include documentation, product requirements, formal reviews, testing, and customer approval.

This report confines tailoring to a small, focused set of areas that have a high payoff in terms of cost and schedule. The areas that provide a focus for the tailoring method described in this report are:

a.
Project Size and Complexity.

b.
Formality.

c.
Control.

3.2
Identifying Project Characteristics

Often, the answers to the questions in Table 3-1 can help define the characteristics of a project to the level of detail required to make informed tailoring decisions. Table 3-1 is roughly divided into three groups of questions to correspond with the three high payoff areas.
 The development manager is expected to answer all the questions with rough order of magnitude answers before proceeding to the next tailoring step.

Once the project's characteristics are quantified at this level, the next step in tailoring the organization's standard software process to the needs of a project is to choose and tailor the process building blocks that will be used for the project.

3.3
Choosing and Tailoring the Building Blocks

Choosing and tailoring building blocks for a specific project is a two-step process. Step one involves selecting the appropriate building blocks from the inventory. This step involves adherence to some basic options for using individual building blocks, usually based on organizational policy, such as the ones that follow:

Table 3-1. Sample project characteristics.

	Characteristic
	Quantification

	Size and Complexity:
	

	
Software Product (estimated SLOC or FP)
	

	
Documentation (estimated # of pages)
	

	
Development Team (estimated # of people)
	

	System Product Mix:
	

	
HWCIs
	

	
CSCIs
	

	
Interfaces (External)
	

	Type of Software (Command & Control, Embedded, MIS, ATE)
	

	Type of System (Centralized, Distributed, etc.)
	

	Intent (Feasibility study, research, operational system, incrementally developed operational system, upgrade to an existing system, etc.)
	

	Criticality (Life Critical, Safety Critical, etc.)
	

	Users
	

	
of Users
	

	
Type of Users
	

	
Local or Distributed
	

	# of Installations
	

	Life of Product (# mo or yr)
	

	Upgrade Interval
	

	Formality
	

	Development requirements (Req. standards, etc., from customer)
	

	Formal reviews and audits
	

	Formal approval of deliverables and baselines
	

Table 3-1. Sample project characteristics. (Cont.)

	Characteristic
	Quantification

	Control
	

	Management visibility level required
	

	
Development Organization
	

	
Acquirer Organization
	

	Project Risk Management
	

	
Cost
	

	
Schedule
	

	
Technical
	

	Key:
ATE
Automatic Test Equipment

CSCI
Computer Software Configuration Item

FP
Function Points

HWCI
Hardware Configuration Item

MIS
Management Information System

SLOC
Source Lines of Code

a.
Some building blocks are always implemented as is.

b.
Some building blocks may be tailored according to a set of guidelines. (Specific rules need to be documented for each tailorable building block. Generally, the guidelines will state whether the building blocks may be altered or whether only parts of the building blocks may be used.)

c.
Some building blocks may be waived with appropriate approval.

d.
Some building blocks may be replaced with appropriate approval.

e.
New building blocks may be added with appropriate approval.

In all cases, the customer's needs and management philosophy provide major inputs to the tailoring decisions.

Step two involves tailoring the individual building blocks. The project characteristics, including technical and acquisition requirements, are the primary inputs needed to choose and tailor the correct set of building blocks for the project. Paragraph 3.3.1 defines the general approach to tailoring, and Paragraph 3.3.2 discusses making detailed tailoring decisions based on the project characteristics identified in Table 3-1.

3.3.1
The Tailoring Process

Tailoring rules are part of the organization's standard software process building blocks as shown in Figure 2-1. These rules provide directions on how to tailor the specific building blocks that comprise the organization's standard software process to the needs of a project. As previously mentioned, some of the building blocks always will be used, e.g., project management, SCM, etc. Other building blocks may be used only as required, e.g., peer reviews may only be required for projects with greater than three developers. Figure 3-2 expands on Figure 3-1 to show the basic steps required to tailor an organization's standard software process to the needs of a specific software process.

As shown in Figure 3-1, project information, organization inputs, and external inputs are all needed to tailor a software process for a specific project. Figure 3-2 shows that these inputs are required to identify the characteristics of the project. Then, in addition to the project characteristics identified during the first step of tailoring, subsets of the information shown in Figure 3-1 are needed as inputs to choose and tailor the correct set of building blocks for the project.

Figure 3-2. Tailoring a process for a software project.

For example, the building blocks that comprise the organization's standard software process and the rules for tailoring the building blocks to the needs of a project are the organization inputs required to help derive the project's defined software process.

3.3.2
Making Tailoring Decisions

Tailoring an organization’s standard software process takes guidance from the organization’s tailoring rules, information about the incoming project, knowledge of the requirements used by the acquisition organization, and software project management experience to make informed decisions. As an organization begins tailoring its standard software process, it is important to use experienced individuals to help mold the tailoring process and provide guidance as new project managers become involved with incoming projects. This will help reduce the amount of confusion and rework that often accompany an organization’s first attempts at modifying/tailoring their processes for the needs of a project.

Table 3-2 provides examples of tailoring guidance based on the information obtained by filling out the project characteristics form identified in Table 3-1. The tailoring process for individual building blocks (Step 2) is as follows:

Table 3-2. Example tailoring guidance.

	Key Area
	Quantification
	Heuristics
	Examples of Affected Building Blocks

	Size and Complexity
	Large and complex. Many hardware and software elements that need to interact. Generally built by many distinct organizations.
	•
Formalize requirements traceability and cross-org. communication

•
Use standardized documents

•
Where possible combine documentation and testing across org’s.

•
Share SEEs and tools across org’s.
	•
SW Life Cycles

•
Support Tools

•
Risk Mgmt

•
Tech. Doc.

•
SW System Test

	
	Application or installation critical.
	•
If additional safety requirements, plan a safety program using MIL-STD-882C Safety Standard as a guide

•
Use reliability modeling and testing

•
Use secure development and test environments (as applicable)
	•
SW Life Cycles

•
Reviews

•
Metrics

•
Tech. Doc.

•
Unit Test

•
SW System Test

Table 3-2. Example tailoring guidance. (Cont.)

	Key Area
	Quantification
	Heuristics
	Examples of Affected Building Blocks

	Size and Complexity (Cont.)
	Medium size and complexity. Some interfaces with other software. Coordination with other software projects required.
	•
If interim software but still operational, need to worry about reliability, availability, testing, etc.
	•
Requirements Mgmt

•
SW Life Cycles

•
Tech. Doc.

•
Reviews

•
Metrics

•
Unit Test

•
SW System Test

	
	Special purpose. Limited application. Small number of users.

Essentially an independent prototype.
	•
If a throw-away, minimize documentation; use engineering notes only

•
If small team, limit inspections

•
No formal, independent testing

•
No specific language requirements

•
Still need SCM control, but with limited formality
	•
Requirements Mgmt

•
SCM

•
Inspections

•
SW Life Cycles

•
Unit Test

•
Tech. Doc.

•
Reviews

•
Metrics

•
SW System Test

•
Programming Languages

•
Project Mgmt

	Formality
	Military Standards
	•
If a system upgrade or existing system replacement, should you change standards for the new software, e.g., from DOD-STD-2167A to MIL-STD-498?
	•
Risk Mgmt

•
Reviews

•
Tech. Doc.

•
SW Life Cycles

•
SCM

•
Support Tools

•
Project Mgmt

Table 3-2. Example tailoring guidance. (Cont.)

	Key Area
	Quantification
	Heuristics
	Examples of Affected Building Blocks

	Formality (Cont.)
	Commercial Standards
	•
Know what to expect in advance
	•
Possibly All Available for Tailoring

	
	Subcontractor Defined Standards
	•
Don't do it without fully understanding the subcontractor's standards and ensuring they meet the project's needs
	•
Only the Building Blocks Affected by other Project Criteria

	
	Traditional Acquisition Requirements
	•
Use traditional reviews (e.g., PDR, CDR, etc.) using MIL-STD-1521B as a guide

•
Use traditional project management rather than IPTs
	•
Reviews

•
SW Life Cycles

•
SCM

•
Project Mgmt

	
	IPTs
	•
Use in-process reviews and open developer/ acquirer relations and agreements.
	•
Reviews

•
SW Life Cycles

•
Tech. Doc.

•
SCM

•
Project Mgmt

	
	Loose
	•
Don't do it, except for throw-away prototypes
	•
SW Life Cycles

•
Metrics

•
Building Blocks Affected by Other Criteria

	Control
	Cost Risk(s)
	•
Minimize deliverable documents, formality of reviews
	•
Reviews

•
SW Life Cycles

•
Tech. Doc.

•
Project Mgmt

•
Risk Mgmt

Table 3-2. Example tailoring guidance. (Cont.)

	Key Area
	Quantification
	Heuristics
	Examples of Affected Building Blocks

	Control (Cont.)
	Schedule Risk(s)
	•
Choose simplest adequate life cycle

•
Use parallel implementations

•
Language choices (e.g., 4GL/rapid prototyping)

•
Reduce documentation
	•
Reviews

•
SW Life Cycles

•
Programming Languages

•
Tech. Doc.

•
Project Mgmt

•
Risk Mgmt

	
	Technical Control/ Risks
	•
If the problem and solution not well understood, choose either rapid prototyping, incremental deliveries, or evolutionary model

•
If requirements expected to be unstable, plan for rework, provide metrics for requirements stability

•
If the project will reuse legacy or reusable software, ensure strong SCM

•
If the project is expected to produce reusable code, enforce coding standards and ensure strong SCM

•
If technical risks, use prototyping or COTS as risk mitigation
	•
Possibly All Available for Tailoring

Table 3-2. Example tailoring guidance. (Cont.)

	Key:

CDR
Critical Design Review

COTS
Commercial Off-The-Shelf

4GL
Fourth-Generation Language

IPT
Integrated Product Team

PDR
Preliminary Design Review

SEE
Software Engineering Environment

SW
Software

a.
Quantify the project characteristics identified in Table 3-1.

b.
Interpret the quantification of the project characteristic using the heuristics identified in Table 3-2 (or locally defined tailoring rules).

c.
Identify the set of building blocks to modify (or use part of), waive, or replace.

d.
Decide on the exact tailoring decisions for each selected building block.

It is assumed that the building blocks that are not identified in the tailoring process will be used for the project without change.

When the tailoring process is complete, the project’s defined software process is first documented as an agreement between the project team and the organization regarding how the organization’s standard software process will be tailored for this project. Second, the software development plan is developed to reflect the process to be implemented on the project. These two topics are addressed in Paragraph 3.4.

3.4
Documenting the Project’s Defined Software Process

3.4.1
Documenting the Tailoring Decisions in a Compliance Agreement

A compliance agreement typically is used within an organization to document a project’s defined software process. This agreement documents the tailoring decisions derived through the process described in Paragraph 3.3. In general, compliance statements document tailoring decisions by exception using statements of the form: “Project X will conform with the organization’s standard software process except for the following provisions.”

A waiver is generated when required building blocks are deleted from the project’s defined software process, when the contents of any building block(s) are modified in significant ways (as defined for each organization), or when new or previously unapproved building blocks are used in a project’s defined software process.
 When reviewing waiver requests, it is important to ensure that measurement is not deleted from the project’s defined software process. Measurement helps ensure that the organization will have visibility into the software project for project oversight, product tracking, and process compliance.

The compliance agreement is reviewed and approved by managers who have the authority to grant tailoring decisions for the organization’s standard software process and/or, typically, the SEPG. The compliance agreement then forms the process-related foundation for the software development plan.

3.4.2
Documenting the Project’s Defined Software Process in a Plan

The final step in documenting the project’s defined software process is to record the process in a software development plan. Both military and commercial standards provide templates for software development plans. An organization usually chooses (or develops) a software development plan template and uses the template as a standard outline.

Three items that help with the plan are Work Breakdown Structures (WBSs), schedules, and activity networks. These items support the evolution of the plan, and ultimately become part of it. When the work is identified and defined in the WBS, schedule, and activity network, the software development plan can be completed based on the work definitions, the process to be implemented, and the resource plan for project completion.

3.4.2.1
Organizing the Work

The work to be done usually is organized into work packages that are mapped into a WBS [LAKE93]. A WBS traditionally was used as a cost-reporting structure, but it is more effective when used as a road map for managing a project. A WBS has two parts: a product part and a process part. The product part is defined through the breakdown of a system into subsystems, configuration items, and other subelements of the system. The product is usually defined top down through the WBS. Processes are defined to support each level of the product breakdown. The processes usually are shown as an activity-based decomposition of the product at a level that will be defined and managed as a project. Each level of the WBS shows more detail concerning parts of the product and the processes that will be executed to produce (or support) the product (from the system level down to the smallest subelement identified on the WBS). When shown as a block diagram, as in the simplified example in Figure 3-3, the WBS can provide a decomposition of the products and processes at whatever level is required to develop, produce, and support a system. Guidelines for building a software project WBS follow (derived from [LAKE93]):

a.
Show all software project work at a level that can be used for software project tracking and reporting. The WBS must provide the information that allows the project manager to extract progress measurement (technical, cost, and schedule) for the project’s required status reporting.

b.
Include products, events (e.g., reviews and audits), and processes (e.g., software qualification) that will show visibility into software development, testing, deployment, training, and life cycle support (as required).

c.
Assign WBS elements so that they can support risk assessment, engineering change proposal evaluation, contract change evaluation, interface management, data management, and configuration control.

d.
Provide the ability to extract costs for separate types of software work effort (e.g., prototype, full scale development, maintenance).

e.
Ensure that the WBS is compatible with the available project resources (e.g., staff) and organization (e.g., independent qualification testing).

Additional guidance on constructing and using a WBS can be found in MIL-STD-881B.

Figure 3-3. Simplified example software WBS.

3.4.2.2
Documenting the Schedule

The most popular representation of a project schedule is in the form of a Gantt chart. This form provides a visual description of the duration and sequence of project activities. (Figure 3-4 shows a Gantt chart that reflects the WBS presented in Figure 3-3.) Schedules like this one depict the time ordering of events but lack the ability to show interrelationships and dependencies explicitly. When kept updated with progress information, the project schedule provides inputs for specific forms of project tracking such as earned value and the Cost and Schedule Status Report (CSSR).

Figure 3-4. Example software schedule with WBS elements.

3.4.2.3
Developing the Activity Network

When the schedule is related to the WBS, as in Figure 3-4, the schedule sequence begins to show possible relationships and dependencies among project activities. These relationships and dependencies are shown explicitly in an activity network like the one shown in Figure 3-5. Activity networks are an outgrowth of the Project Evaluation and Review Technique (PERT) and the Critical Path Method (CPM) which, in addition to showing time dependencies, highlight sequence dependencies on a critical path. The value of showing an activity network with the critical path is that activities that rely on other activities for completion and/or have special time or resource limitations are highlighted for management tracking and oversight.

3.4.2.4
Completing the Software Development Plan

Section 3.3 identified four options for using individual process building blocks for a specific project. For each option, the following rules should be applied to document the project’s defined software process in the software development plan:

a.
When using a building block as is, reference it from the plan rather than repeating it to ensure the project’s consistency with the organization’s standard software process.

b.
When a building block needs to be tailored, apply the specific guidance from the compliance agreement, and either

1.
Document the exceptions to the building block in the plan, or

2.
Rewrite the building block in the plan and explicitly mark the modifications.

Also, reference the compliance agreement in the plan.

Figure 3-5. Example activity network.

c.
When a building block is waived, note in the applicable paragraph of the plan that the building block is “not applicable” and reference the compliance agreement.

d.
When a building block is replaced by a nonstandard building block, write the replacement building block in the plan at the applicable paragraph or reference the replacement building block.
 Also, reference the compliance agreement in the plan.

The project’s defined software process is documented or referenced in the software development plan. In general, software development plans present software process information in a logical order. Table 3-3 is a two-level table of contents for a software development plan based on the requirements of MIL-STD-498. This software development plan is organized as follows:

a.
An introduction to the system and the document. (Section 1)

b.
References. (Section 2)

Table 3-3. Example SDP Table of Contents.

	1.
	SCOPE

	1.1
	Identification

	1.2
	System Overview

	1.3
	Document Overview

	1.4
	System Overview

	2.
	REFERENCE DOCUMENTS

	2.1
	Government Documents

	2.2
	Non-Government Documents

	3.
	OVERVIEW OF REQUIRED WORK

	3.1
	System and Software Requirements and Constraints

	3.2
	Project Documentation Requirements and Constraints

	3.3
	Project Position in the System Life Cycle

	3.4
	Selected Program/Acquisition Strategy or Associated Requirements and Constraints

	3.5
	Project Schedule and Resource Requirements and Constraints

	3.6
	Other Requirements and Constraints

	4.
	PLANS FOR PERFORMING GENERAL SOFTWARE DEVELOPMENT ACTIVITIES

	4.1
	Software Development Process

	4.2
	General Plans for Software Development

	5.
	PLANS FOR PERFORMING DETAILED SOFTWARE DEVELOPMENT ACTIVITIES

	5.1
	Project Planning and Oversight

	5.2
	Establishing a Software Development Environment

	5.3
	System Requirements Analysis

	5.4
	System Design

	5.5
	Software Requirements Analysis

	5.6
	Software Design

Table 3-3. Example SDP Table of Contents. (Cont.)
	5.7
	Software Implementation and Unit Testing

	5.8
	Unit Integration and Testing

	5.9
	CSCI Qualification Testing

	5.10
	CSCI/HWCI Integration Testing

	5.11
	System Qualification Testing

	5.12
	Preparing for Software Use

	5.13
	Preparing for Software Transition

	5.14
	Software Configuration Management

	5.15
	Software Product Evaluation

	5.16
	Software Quality Assurance

	5.17
	Corrective Action

	5.18
	Joint Technical and Management Reviews

	5.19
	Other Software Development Activities

	6.
	SCHEDULES AND ACTIVITY NETWORK

	7.
	PROJECT ORGANIZATION AND RESOURCES

	7.1
	Project Organization

	7.2
	Project Resources

c.
Project information, constraints, and external requirements. (Section 3)

d.
An overview of the software process and general plans for the project. (Section 4)

e.
Detailed process descriptions for the software project, i.e., the project’s defined software process. (Section 5)

f.
Details of the schedule and activity network. (For clarity, the schedule and activity networks should be tied to the WBS.) (Section 6)

g.
Project organization and resource information, e.g., organization charts, personnel, facilities, etc. (Section 7)

The WBS, schedule, and activity network show the process relationships and the implementation sequence to be used for the project, as shown in Figures 3-3 through 3-5; they provide the basis for measuring project progress in relationship to the project plans. In its totality, the software development plan provides the foundation for measuring project progress, processes, and products.

4.
TAILORING AN ORGANIZATION’S STANDARD SOFTWARE PROCESS – AN EXAMPLE SOFTWARE PROJECT

4.1
Introduction to the Example

This example illustrates the issues that need to be addressed to tailor an organization's standard software process to the needs of a specific project. It includes both a sample project scenario and a set of software process characteristics. The example project and process characteristics are highly simplified to help show how software processes can be tailored to the needs of a project.

4.1.1
Project Scenario

A software developer, known as XDEVEL, has been tasked to build an upgrade to one of the fighter aircraft used by the U.S. Air Force.

This aircraft needs to update its navigation system with Global Positioning System (GPS) capabilities. The GPS model chosen for this aircraft has been used in a similar application for a Navy aircraft, so it is considered to be an off-the-shelf item. Modifications to the GPS software will be required to integrate the GPS into the Air Force aircraft. Aircraft software will need to be written (and/ or modified) to support the following needs:

a.
Integrate the GPS into the existing navigation system.

b.
Display updated navigation information on the pilot's Head-Up Display (HUD).

c.
Allow the pilot access to the modified navigation data through the Control Display Unit (CDU).

d.
Communicate GPS information to ground control and to other aircraft in a mission. (No equipment upgrades are planned to support the increased communications requirements.)

The requirements for this modification are well known. The current navigation system and interface software for the aircraft is written in C, and due to the limited nature of the changes to the navigation software, no change in language will be required. MIL-STD-498 will be used as the software development and documentation standard for this acquisition.

The contractor that developed the GPS system for the Navy aircraft will make the GPS software modifications on a subcontract to XDEVEL. XDEVEL will provide a specification of the modification requirements to the subcontractor. This will reduce the cost and risk associated with modifying the GPS software.

XDEVEL has determined that about 9,000 SLOC will need to be developed and/or modified to implement this new capability in the aircraft. The condition of the existing navigation software is not known and the customer wants formal documentation, so it was assumed that the productivity for the development team will be about that of new development.

The acquirer will supply a System/Subsystem Specification (SSS), a System Design Description (SSDD), and an Operational Concept Document (OCD). The acquirer will modify the OCD during development to reflect the changing needs of the system.

The developer will be responsible for the following technical documents:

a.
Software and Interface Requirements Specifications (SRS & IRS).

b.
Software and Interface Design Descriptions (SDD & IDD).

c.
Software test documents, including:

1.
Software Test Plan (STP).

2.
Software Test Description (STD).

3.
Software Test Report (STR).

The developer will be responsible also for the following management and support documents:

a.
Software Development Plan.

b.
Software Transition Plan (STrP).

c.
A Software Version Description (SVD).

This means that the software effort will take approximately 3.25 man-years over a period of 12 months. The development, test, and technical documentation effort will be approximately 2.25 man-years; the remaining 1.0 man-year will be dedicated to software project management, the support documents, SQA, and SCM. User documentation will be produced as part of the new CDU development effort. The GPS subcontractor will develop the SRS and SDD for the GPS from existing materials created for the Navy.

The pilots for this aircraft dislike the CDU and want a replacement. The current CDU has a very small keypad, and the display is only 4 lines by 40 characters. The pilots would like to at least double the display capacity, increase the display visibility, change the keypad, and add new query capabilities. The pilots want an opportunity to help determine the requirements for the CDU and to have significant inputs to the changes to the user interface.

Since the pilots want so much input to the new CDU, XDEVEL feels that prototyping will be useful to support the user interface development. Also, it is not known how many new capabilities will be added to implement the pilots' query requirements.

XDEVEL is assuming that the new CDU will have all new software. The Air Force wants the new CDU to be implemented in Ada, and the existing code is in assembly language so it is assumed that there will be no software code reuse. MIL-STD-498 also will be used for the CDU development, and as with the GPS integration, the customer is requesting significant amounts of formal documentation.

Based on XDEVEL's knowledge of the existing CDU and a rational appraisal of the possible new requirements, XDEVEL assumes that the new CDU will require about 20,000 SLOC to implement. Given the unknown nature of the new requirements, this is a soft estimate. The customer wants the new CDU to be a significant improvement from the current version, so there may be some flexibility to renegotiate the terms of the contract when the first sets of prototypes are completed and approved by the pilots.

In both parts of this aircraft upgrade, software supportability is a primary concern for the customer. Thus, planning for the software transition to the Government and for Post Deployment Software Support (PDSS) is stressed in the acquisition. This may add labor to the existing software estimates from XDEVEL.

This report uses the GPS example. The CDU example is described for the reader to use to explore the process tailoring concepts independently.

4.1.2
Introduction to the XDEVEL Standard Software Process

XDEVEL is a respected, successful development organization. The organization has a well defined, flexible process for planning for and developing software. It is known also as being an open and innovative place to work. XDEVEL received its CMM assessment as a Level 3 organization approximately one year ago.

Early software project planning is stressed, and the plans are developed to integrate effectively with the other engineering plans for each project. There is strong communication among all the engineering disciplines, and each new project is managed from an integrated system view.

The software development plans are reviewed and approved by all affected engineering groups and upper management before implementation. Software estimates are derived through expert analysis and documented for use throughout the project's life. These estimates are backed up with outputs from estimation tools that are used to give a "reality check" to the experts' initial ideas. Actual project data is retained to support an estimation improvement effort under way at XDEVEL.

Software project management metrics are used to provide visibility into project performance. When performance deviates from the initial plans, the project manager is responsible for either making changes to the way the project is being handled to bring the project back into conformance with the plan or replanning, as necessary. Software subcontracts are managed using a set of defined policies and procedures.

Software requirements, design, and code inspections are used to support development. Defect metrics from the inspections are maintained. Other product related metrics are identified and maintained for each development effort to help keep reasonable visibility into the development effort. These metrics also are used to support software project management and risk assessment.

SQA and SCM are part of all software development and maintenance efforts. Metrics from SQA product and process audits are used to help improve product quality and software process efficiency. SCM is used both in its classical role and as a support mechanism for software requirements management.

All software engineering personnel have and maintain a personal training plan that helps them keep up-to-date on their requisite engineering skills. Based on project needs, extra training may be required for special needs.

XDEVEL has three basic software life cycles that are approved for use within the organization. They are: waterfall; incremental development, which uses a basic waterfall within each "block release cycle" for an evolving product; and a spiral model that relies heavily on prototyping for the first iteration or two through the spiral. Alternatives to these life cycles are allowed as long as the alternatives are documented and approved by upper management and the SEPG. The "approved" engineering processes for XDEVEL are maintained on-line for easy access.

Testing also has defined processes from the unit level through to software system testing. All testing that comprises the formal qualification testing is performed by independent test personnel.

During the last three years, XDEVEL has implemented a "lessons learned" policy that requires that at the end of a software project, the project team meets to discuss the successes and problems encountered during project execution. The lessons learned are documented and maintained to help new projects avoid problems and to support software process improvement. The lessons learned, metrics data, approved software and management processes, and other useful information is maintained in a software engineering library for the corporation. Much of the information is accessible on line. The information that exists only in hard copy is catalogued and referenced in the on-line library. All information about each project is cross referenced for easy retrieval. SCM developed and maintains the library.

A team of engineers and managers from the software engineering organization are responsible for maintaining the building blocks in a library, keeping the approved software management and engineering processes up to date, and identifying new opportunities for improvement. This team reports to the manager of software engineering and to the corporate vice president of engineering. The vice president of engineering maintains a keen interest in the software engineering processes for the corporation. The manager of software engineering and the vice president of engineering are responsible for providing quarterly reports to the company president on the state of software engineering and software process improvement.

4.2
Identifying Project Characteristics

The basic information about the example is:

a.
Size ≈ 9000 SLOC.

b.
1 CSCI on aircraft. 1 CSCI on GPS to be modified through subcontract.

c.
≥ 5 interfaces external to the GPS.

d.
150 aircraft in the inventory to be upgraded; one user for each aircraft. It is assumed that the aircraft will remain in service for at least another decade.

e.
≈ 800 pages of documentation (based on the definition in Paragraph 4.1.1).

f.
Subcontract for modifications to GPS code and for new (or modified) GPS documentation.

g.
Minimal technical complexity.

h.
Life critical application.

i.
Moderate need for management visibility.

j.
Testing needs to be used to assure the reliability required to fulfill the requirements for the aircraft.

The first tailoring step is to list the known project characteristics in the project characteristics form to support further analysis, as shown in Table 4-1. The areas for concern are human safety, the level and formality of documentation, implementation of MIL-STD-498 and its changes in philosophy from previous standards, lack of formal reviews, and the unknown complexity that could exist in the interface code.

Table 4-1. Project characteristics for GPS example.

	Characteristic
	Quantification

	Size and Complexity:
	

	
Software Product (estimated SLOC or FP)
	≈ 9,000

	
Documentation (estimated # of pages)
	800 pages; 275 from subcontract

	
Development Team (estimated # of people)
	7 – 3 developers,
2 testers, 1 doc., 1 mgr.

	System Product Mix:
	

	
HWCIs
	1

	
CSCIs
	2 – 1 new, 1 mod

	
Interfaces (External)
	5

	Type of Software (Command & Control, Embedded, MIS, ATE)
	Embedded

	Type of System (Centralized, Distributed, Mission Critical, Weapons System, etc.)
	Weapons System

Table 4-1. Project characteristics for GPS example. (Cont.)

	Characteristic
	Quantification

	Intent (Feasibility study, research, operational system, incrementally developed operational system, upgrade to an existing system)
	Upgrade

	Criticality
	Life Critical

	Users
	

	
of Users
	1 per installation

	
Type of Users
	pilots

	
Local or Distributed
	Local

	# of Installations
	150

	Life of Product (# mo or yr)
	10 yr

	Upgrade Interval
	Unknown

	Formality
	

	Development requirements (Req. STDs, etc., from customer)
	MIL-STD-498 (Upgrade from DOD-STD-2167A)

	Formal Reviews and audits
	In-Process Reviews

	Formal approval of deliverables and baselines
	Formal approval of plans and all artifacts delivered after CSCI test and revised after flight test

	Control
	

	Management visibility level required
	

	
Development Organization
	Moderate

	
Acquirer Organization
	Unknown

	Project Risk
	

	
Cost
	Moderate

	
Schedule
	Moderate

	
Technical
	Low – Known problem

This is the project information that provides one of the primary inputs for tailoring the XDEVEL’s standard software process to the needs of the project.

4.3
Choosing and Tailoring the Building Blocks

From the description of how XDEVEL does business, as presented in Paragraph 4.1.2, it is obvious that the organization has a well-defined software process. The building blocks identified in Figure 4-1 are either mentioned or strongly implied in Paragraph 4.1.2.

Figure 4-1. XDEVEL’s building blocks.

Based on the project characteristics identified in Table 4-1, the guidance in Table 3-2, and XDEVEL’s building blocks, Table 4-2 identifies the XDEVEL building blocks that may need to be tailored for the GPS software project.

On examining the project characteristics and candidate affected building blocks, the project manager notes the following regarding the issues related to the building blocks in question:

a.
Adding the GPS to an existing aircraft is a known problem and the system will be small; thus a waterfall life cycle will be used.

b.
Reliability modeling and testing are already documented in the unit test and software system test practices.

c.
Reliability metrics will be stressed during testing. These metrics are already documented in the metrics practices for use with life-critical or safety-critical systems.

d.
The SCM practices are focused on a standard set of deliverables with relatively standard reviews. Modifications may need to be made for the different baselines that will be established for this project.

e.
The review practices stress a formal review process for projects using a waterfall life cycle; this will need to be modified for the in-process reviews used for this project.

Table 4-2. Candidate XDEVEL building blocks to be tailored.

	Key Area
	Quantification Factors
	Heuristics
	Candidate Affected Building Blocks

	Size and Complexity
	Small but life critical application to be installed on at least 150 aircraft

10-year operational life

Unknown software upgrade schedule
	•
Plan a safety program using MIL-STD-882C Safety Standard as a guide

•
Use reliability modeling and testing
	•
SW Life Cycles

•
Metrics

•
Unit Test

•
SW System Test

	Formality
	MIL-STD-498 (Upgrade from DOD-STD-2167A)

In-process reviews

Formal documentation

Formal approval of plans during development

Formal approval of all other items after CSCI testing
	•
Plan for strong internal SCM for developmental artifacts to ensure traceability of changes to documents and code

•
Use full implementation of MIL-STD-498 Data Item Descriptions (DIDs) for required documents

•
Use a metrics program to track project progress and conformance to estimates
	•
SCM

•
Project Mgmt

•
Reviews

•
SW Life Cycles

	Control
	Unknown acquirer's management visibility needs

Moderate cost and schedule risk
	•
Share metrics data with acquirer

•
Choose simplest life cycle to implement for a known problem

•
Documentation set in contract – unable to modify

•
Use C for new system: No language change
	•
SW Life Cycles

•
Metrics

•
Risk Mgmt

f.
Since use of MIL-STD-498 documentation is new to the organization, it will be important to track progress on document development for this project. These practices are already documented in the project management and metrics building blocks, so no change will be required.

g.
The metrics practices are internal; they do not cover sharing data with the acquisition organization. This is a modification to the metrics building block, and it may want to be added to the metrics building block in the next release. (Sharing metrics data also may become interesting as part of the lessons learned at the end of the project.)

h.
Although the risk management practices will be used, there is nothing in the approach to risk management for this application that is out of the ordinary. Use the risk management building block as written; no change.

The project manager is responsible for developing the compliance agreement for the project’s defined software process and for developing the software development plan.

4.4
Documenting the Project’s Defined Software Process

4.4.1
Documenting the Tailoring Decisions

The changes to the organization’s standard software process are relatively minor for this project. As discussed in Paragraph 3.4.1, the deviations can be documented by exception in a compliance agreement. In this case, the following tailoring is applicable:

a.
Choose the waterfall model from the three available software life cycles.

b.
Delete the allocated baseline (SRS and IRS) from the SCM practices and refer to internal control processes.

c.
Add external control of the software development plan to the SCM practices.

d.
Modify review requirements to reflect only in-process reviews with the acquirer.

e.
Modify the metrics practices to add external distribution of metrics data to the acquisition organization.

In practice, these modifications need to be made with references to the document names and paragraph numbers that will need to be modified or deleted to reflect the tailoring. Additions can be made through descriptions of the changes and document references.

4.4.2
Incorporating the Project’s Defined Software Process in a Plan

4.4.2.1
Organizing the Work

The first step in developing the software development plan is to examine the system WBS and determine the level of detail needed to identify the processes that will be employed to run the project. In the case of the GPS/CDU Upgrade program for XDEVEL, program’s products can be decomposed as shown in Figure 4-2 to get to the GPS Interface and Communications Software Project, which is the project name for the example presented in this section.

The software project then is decomposed into the processes that will be employed to run the project. In this case the major processes are project management, software development support, software development, software qualification, and post-development support. Then these processes are broken down into their respective elements to show more detail in how the project will be run. For example, the software development and qualification items show a decomposition that is consistent with the waterfall life cycle chosen for this project, as discussed in Paragraphs 4.3 and 4.4.1. The WBS decomposition is complete when it is determined that resource allocation, costs, and schedules can be tracked based on the work definitions shown in the WBS and an associated work breakdown description.

4.4.2.2
Documenting the Schedule

At this point, a schedule estimate needs to be documented based on the WBS. Figure 4-3 is a Gantt chart based on the WBS decomposition of the GPS Interface and Communications Software Project (starting with WBS element 1222).

4.4.2.3
Developing the Activity Network

When the schedule is completed, the activity network can be documented to show the dependencies among the activities identified in the WBS. Figure 4-4 is a simplified activity network based on the WBS and schedule provided in Figures 4-2 and 4-3.

The final planning steps are to record the processes, activities, and plans in the software development plan as discussed in Paragraph 4.4.2.4.

4.4.2.4
Completing the Software Development Plan

Paragraph 3.4.2.4 discussed the options for documenting the modifications to the building blocks in the software development plan. For the GPS Interface and Communications Software Project, three building blocks will be modified and a fourth will use one of the three life cycle options documented in the XDEVEL organization’s standard software process. All other building blocks will be used as is.

Figure 4-2. GPS Interface and Communications Project WBS.

Figure 4-3. GPS Interface and Communications Project Gantt chart.

To document the project’s defined software process in a software development plan using the outline identified in Table 3-3, the tailoring for the XDEVEL building blocks can be documented in the following ways:

a.
Reference to the life cycle adopted for this project from the standard building blocks could be made in the software development plan, Paragraphs 3.3 or 4.1 (or their subparagraphs).

b.
Modifications to the SCM practices to cover deletion of the allocated baseline and addition of external configuration control for the software development plan should be documented in the software development plan, Paragraph 5.14 (or its subparagraphs).

Figure 4-4. GPS Interface and Communications Project activity network.

c.
Modifications to the review requirements to reflect only in-process reviews should be documented in Paragraph 5.18 (or its subparagraphs).

d.
Modifications to the metrics practices for external distribution of metrics data should be documented in the subparagraphs for Paragraph 5.19 that deal with metrics.

Where no building block exists to cover a specific process area in the software development plan, that information will need to be generated. For example, XDEVEL does not have a process building block for establishing the software development environment; this will need to be documented in Paragraph 5.2 of the software development plan. Building blocks used as is should be referenced from the appropriate paragraphs in the software development plan (e.g., the SQA practices will be referenced from Paragraph 5.16 rather than repeated).

The WBS, schedule, and activity network provide inputs for Paragraphs 3.4, 4.2, and Section 6. The remainder of the plan is developed specifically to address the unique requirements of this project, e.g., the overview of the work and constraints on it that are covered in the paragraphs of Section 3 and the organization information presented in Section 7.

The plan, when completed, defines the work to be done, constraints on the work, and the processes used to complete the work. This information then is used to manage the project and to provide the foundation for measuring project progress, process conformance, and selected product measures.

5.
CONCLUSIONS

Tailoring an organization’s standard software process to the needs of a project is a detailed process that takes time and experience to complete successfully. The gains in streamlining software project planning and management appear to far outweigh the time and effort required to ensure that the project’s defined software process (i.e., the tailored process) meets the needs of the project.

Throughout the research for this report, the following concepts emerged as important to the tailoring and planning processes:

a.
Whenever possible, an organization’s standard software process should be modular. It should consist of a set of building blocks that can be used in a number of ways to fulfill the needs of a software project.

b.
While an organization’s standard software process may need to fulfill the requirements of a process standard or other form of guidance, the organization’s standard software process should be developed to fulfill the needs of the organization rather than simply comply to a specific form of guidance.

c.
The organization's standard software process should be written as requirements so that compliance is mandatory and can be audited successfully.

d.
The WBS, schedule, and activity network identify the processes to be employed on the project, their sequence, and their critical dependencies.

e.
Software development plans contain logical descriptions of the process(es) to be employed on a software project (as exemplified in Table 3-3). These processes can be documented through references to the building blocks that will be used on the project along with descriptions of the modifications and waivers that provide the process tailoring specific to the project.

f.
The software development plan forms the foundation for measurement to be implemented on a software project. It is important to ensure that the elements of the plan are measurable.

g.
By using a defined, documented process to tailor the organization’s standard software process to the needs of a project, a base of information can be developed that will help members of an organization understand the types of variations that can exist between projects and make the adjustments necessary to fulfill the needs of the project prior to project implementation.

The only way to finally prove the value of tailoring the OSSP to the needs of a project is to do it and to measure the results in improvements in the planning process and in project performance.

LIST OF REFERENCES

	DOD-STD-2167A
	Defense System Software Development, 29 February 1988

	GINS95
	Ginsberg, Mark, "Tailoring and the CMM," Presentation to SEI Symposium, September 1995

	LAKE93
	Lake, Jerry, "The Work Breakdown Structure - It's Much More Than a Cost-Reporting Structure," pp. 3-9, Program Manager, July-August 1993

	MAIB94
	Defense System Software Development DOD-STD-2167A & DOD-STD-2168 Tailoring Tips & Software Development Cycle Chart, © David Maibor Associates, Inc., 1994

	MIL-STD-498
	Software Development and Documentation, 5 December 1994

	MIL-STD-881A
	Work Breakdown Structures for Defense Materiel Items

	MIL-STD-882C
	System Safety Program Requirements, 19 January 1993

	MIL-STD-1521B, Change 1
	Technical Reviews and Audits for Systems, Equipment, and Computer Programs, 19 December 1985

	PAUL93
	Paulk, Mark C., Bill Curtis, Mary Beth Chrissis, and Charles V. Weber, Capability Maturity Model for Software, Version 1.1, CMU/SEI-93-TR-24, Software Engineering Institute, February 1993

LIST OF ACRONYMS

	4GL
	Fourth Generation Language

	ANSI
	American National Standards Institute

	ATE
	Automatic Test Equipment

	CDR
	Critical Design Review

	CDU
	Control Display Unit

	CFD
	Control Flow Diagram

	CMM
	Capability Maturity Model

	COTS
	Commercial Off-The-Shelf

	CPM
	Critical Path Method

	CSCI
	Computer Software Configuration Item

	CSSR
	Cost and Schedule Status Report

	DFD
	Data Flow Diagram

	DID
	Data Item Description

	FP
	Function Points

	GPS
	Global Positioning System

	GUI
	Graphical User Interface

	HUD
	Head-Up Display

	HWCI
	Hardware Configuration Item

	IDD
	Interface Design Description

	IPT
	Integrated Product Team

	IRS
	Interface Requirements Specification

	ISM
	Integrated Software Management

	KPA
	Key Process Area

	MIS
	Management Information System

	OCD
	Operational Concept Document

	PDR
	Preliminary Design Review

	PDSS
	Post-Development Software Support

	PERT
	Project Evaluation and Review Technique

	SCM
	Software Configuration Management

	SDD
	Software Design Description

	SEE
	Software Engineering Environment

	SEI
	Software Engineering Institute

	SEPG
	Software Engineering Process Group

	SLOC
	Source Lines of Code

	SPD
	Software Process Definition

	SPI
	Software Process Improvement

	SQA
	Software Quality Assurance

	SRS
	Software Requirements Specification

	SSDD
	System/Subsystem Design Description

	SSS
	System/Subsystem Specification

	STD
	Software Test Description

	STP
	Software Test Plan

	STR
	Software Test Report

	STrP
	Software Transition Plan

	SVD
	Software Version Description

	SW
	Software

	WBS
	Work Breakdown Structure

GLOSSARY

This glossary provides a brief definition of the important terms used in this report. It is arranged in alphabetical order.

	TERM
	DEFINITION

	Building Block
	A generic method, practice, tool, or process definition in the inventory of software process assets owned and maintained by an organization.

	Current best practice
	A process and associated implementation procedures that an organization keeps current through continuous process improvement.

	Lessons Learned
	The organization’s current best practice for recording a project’s best practices, experiences with tools, problems, and other lessons learned in a postmortem report.

	Metrics
	The organization’s current best practice for measuring software projects, products, and processes.

	Organization Standard Software Process
	A documented set of generic software building blocks which define how a software organization does business.

	Product Inspections
	The organization’s current best practice for inspecting (peer reviewing) software documents and code to remove defects.

	Programming Language
	The set of programming languages, and organizational standards for using them, in which the organization is proficient.

	Project Defined Software Process
	The compilation of tailored building blocks, in a software development plan, for a specific project.

	Project Estimation
	The organization’s current best practice for estimating the cost, schedule, resource requirements, and size of a development effort.

	Project Management
	The organization’s current best practice for managing software projects (includes planning, and tracking and oversight).

	Project Reviews
	The organization’s current best practice for conducting technical and management reviews.

	Requirements

Management
	The organization’s current best practice for eliciting and managing a project’s requirements.

	Risk Management
	The organization’s current best practice for assessing and managing software project risk.

	Software Configuration Management (SCM)
	The organization’s current best practice for SCM.

	Software Quality Assurance (SQA)
	The organization’s current best practice for SQA.

	Subcontract Management
	The organization’s current best practice for managing subcontractors in the performance of all or part of a software project.

	Support Tools
	The set of management and development tools that support the organization’s standard process and practices in which the organization is proficient.

	Software Design
	The organization’s current best practice for performing software design.

	Software Development Methods
	The organization’s current best set of development methods in current use (e.g., object oriented, structured, etc.) in which the organization is proficient.

	Software Life Cycles
	The set of software life cycles (e.g., waterfall, evolutionary, spiral, rapid-prototyping, etc.) for which the organization is proficient at executing a software project.

	Software System Test
	The organization’s current best practice for performing software system test.

	Tailoring rules
	Documented rules that provide guidance for adapting the organization’s standard software process to specific project requirements.

	Technical Documentation
	The organization’s current best practice for managing and producing technical documents.

	Training
	The organization’s current best practice for training personnel in the use of software development methods, tools, and practices.

	Unit Test
	The organization’s current best practice for performing unit test activities.

APPENDIX A.
PROCESS & PLANNING TOOL SUPPORT

The tools examined for this report were defined to allow users to maintain their organization’s standard software process using the tool, tailor that process to the needs of a specific project, develop the project WBS and schedule with the same tool, and track progress during project execution.

It was assumed that these requirements would be implemented in a number of tools. Initially, both custom and commercially available tools were examined. In time, the list of tools was limited to those that were released (or had target dates for release) as Commercial Off-The-Shelf (COTS) products.

A breakdown of the functionality requested for these tools is as follows:

a.
Share data with other tools (e.g., spreadsheets and/or scheduling tools).

b.
Allow the organization to develop and maintain the organization’s standard software process within the tool. The process should be able to be custom designed for the needs of the organization.

c.
Provide a combined process definition and project management capability. (Project management here is assumed to include building and modifying WBSs, activity networks, and schedules and tracking progress against the schedules.)

d.
Allow a number of user roles to have access to the data in the tool set in different ways.

e.
Have a Graphical User Interface (GUI) to support ease of use.

f.
Support software process definition and software process modeling.

g.
Tie its project management capabilities to software process enactment.

h.
Provide both Gantt and activity network (e.g., Program Evaluation and Review Technique (PERT) or Critical Path Method (CPM)) outputs.

i.
Provide a relationship between the WBS and the project’s defined software process.

Five tools were found that claimed to provide a majority of the requested capabilities. These tools and their advertised capabilities are listed in Table A-1 along with vendor, point of contact, and minimum system configuration information. None of the tools were examined in detail since the vendors contacted were not able to provide demonstration versions (or limited time examination copies) on request.

At the time of this research, it appeared that tools with the requested capabilities were just beginning to reach the market. This initial set of tools was unable to provide the full set of requested capabilities, and in dealing with vendors, it appeared that this type of tool set is still quite immature and not ready for use in a production environment.

It will be interesting to see the next generation of these tools and how they mature to support process driven project planning and project management.

Table A-1. Integrated software process and project management tools.

	Tool
	firstCASE
	PEAKS

	Vendor
	AGS Management Systems
1012 West Ninth Ave.
King of Prussia, PA 19406
	Cedar Creek Process Engineering
P.O Box 308
Cedar Creek, TX 78612

	Point of Contact
	Valerie Palamountain
610-265-1550
	Jim Terrel
800-303-8468
terrelj@source.asset.com

	Data Import/Export
	Import Text Files

Export Text Files, Report Writer to Excel/Lotus files.

Can copy and paste between applications.
	ASCII text files.

Import/Export Plans

API Data Access

	Flexible Process
	Can be customized by your organization to incorporate your standards and procedures
	Yes

	Combination of Process Definition and PM
	Yes, suite of tools
	Combined

	Role Driving?
	Can define roles and responsibilities
	Process Driven

	Ease of Use
	Windows based
	GUI, point and click

	Process Definition and Modeling
	through fcprocess
	Yes

	PM tied to Process Enactment
	Yes
	Supports low level enactment in conjunction with other tools

	Gantt & PERT or CPM
	Gantt, PERT, CPM includes resources
	Gantt

	WBS tied to Process Structure
	Yes
	Yes

	Platforms
	PC/Windows, Windows NT, OS2
	IBM RISC System 6000 w/ AIX 3.2.5

porting to Windows NT and Mac 7.x

Table A-1. Integrated software process and project management tools. (Cont.)

	Tool
	Process Engineer
	Total Project Management (TPM)

	Vendor
	LBMS
1800 West Loop South, Sixth Floor
Houston, TX 77027
	Applied Business Technology
361 Broadway
New York, NY 10013

	Point of Contact
	800-345-LBMS

	Kristine Kiltz
212-219-8945

	Data Import/Export
	Bi-directional data transfers for various schedulers including:

Microsoft Project 3.0, Project Workbench 3.0 for Windows and Timeline 5.0 for DOS.
	Export to Text files

	Flexible Process
	Yes, with PE/Process Manager

	Yes

	Combination of Process Definition and PM
	Suite of tools
	Suite of tools

	Role Driving?
	Yes

	No

	Ease of Use
	Reportedly ease to use
	GUI, reportedly highly intuitive

	Process Definition and Modeling
	Yes with PE/Process Manager

	Yes via Methods Architect

	PM tied to Process Enactment
	Yes

	

	Gantt & PERT or CPM
	Gantt, PERT, Resource Charts

	Gantt, CPM

	WBS tied to Process Structure
	Yes

	

	Platforms
	At least 386/33, MS-DOS 3.1 or greater, MS-Windows 3.1, 4 MB RAM, 15 MB drive available on hard drive, mouse and any network operating system.
	PC/Windows

Table A-1. Integrated software process and project management tools. (Cont.)

	Tool
	WBS Chart for Project

	Vendor
	Jim Spiller and Associate (JSA)
3256 Seminole Circle
Fairfield, CA 94533

	Point of Contact
	707-425-2484

	Data Import/Export
	Import/export to Mircosoft Project files. (.MPX)

	Flexible Process
	

	Combination of Process Definition and PM
	No

	Role Driving?
	

	Ease of Use
	GUI, Windows

	Process Definition and Modeling
	

	PM tied to Process Enactment
	None

	Gantt & PERT or CPM
	None

	WBS tied to Process Structure
	

	Platforms
	PC/Windows

�	For this report, it is assumed that a software project plan is the software development plan.

�	It was assumed that any organization that is responsible for developing and/or maintaining software could be included in the audience.

�	The guidelines (or rules) for preparing a project's defined software process tailored from the organization's standard software process are (by definition) part of the organization's standard software process. Thus, these rules become an integral part of fulfilling the requirements for the Software Process Definition (SPD) Key Process Area (KPA) for CMM Level 3.

�	Organizations may want to develop project characteristics tables specifically for their needs.

�	Most development organizations rely on their management and/or their SEPG to approve waiver requests. An internal compliance agreement, in writing, is archived for subsequent project reviews.

�	When building blocks are added to create a project's defined software process, lessons learned from the project should be used to determine if a similar building block should be added to the organization's standard software process.

�	Waiver formats generally are unique to each organization.

� 	An example software development plan template is discussed in more detail in Paragraph 3.4.2.4.

� 	Compliance agreements are typically not deliverable documents; however, an organization may be required to allow auditors to review them.

� 	Referencing replacement building blocks applies to building blocks that are published as standards (e.g., an American National Standards Institute (ANSI) standard) and used verbatim.

� 	The WBS presented in this section is an example. It would need more decomposition to show the level of detail that would need to be employed to develop costs and schedules for this project.

� 	Includes Project Workbench, Method Architect, and Project Bridge.

_889857276.unknown

_889857297.unknown

_889857331.unknown

_889857432.unknown

_889857441.unknown

_889857422.unknown

_889857308.unknown

_889857290.unknown

_889857256.unknown

_889857264.unknown

_889857235.unknown

