Disciplined Software Development
4/30/99
rev 0.3

[image: image6.png]

Disciplined Software
Development

A Review of

Personal Software Process (PSP)SM

and

Team Software Process (TSP)SM
Sponsored by

The Embedded Computer

Resources Support

Improvement Program (ESIP)

Revision 0.3

April 30, 1999

Acknowledgements

STSC staff prepared this report.

Jim Van Buren (The Charles Stark Draper Laboratory)

Steve Friedrich

Rick Swenson

Larry Smith

For more information, please contact the STSC.

Software Technology Support Center

United States Air Force

Ogden Air Logistics Center (OO-ALC/TISE)

7278 4th Street

Hill Air Force Base, Utah 84056

www.stsc.hill.af.mil
Fax: (801)-777-8069

Representations. The ideas and findings in this report should not be construed as an official Air Force position. It is published in the interest of scientific and technical information exchange.

References. The STSC makes every attempt to acknowledge the sources of information used, including copyrighted material. If for any reason a reference has been misquoted or a source used inappropriately, please bring it to our attention for rectification or correction.

Trademarks and Designations. Many of the designations and product titles used by manufactures and sellers to distinguish their production are claimed as trademarks. The STSC has made every attempt to supply trademark information about manufacturers and their products mentioned in this report. The trademarks are the property of their respective owners.

Personal Software Process, PSP, Team Software Process, and TSP are service marks of Carnegie Mellon University. Capability Maturity Model and CMM are registered trademarks of Carnegie Mellon University.

Executive Overview

The field of Software Engineering has studied many techniques that build software engineering skills. However, there has been little attention paid to the impacts of individual discipline in software development. This report studies technologies that support the disciplined development of software. Software developed in this manner has extremely high quality and software projects that use disciplined methods are completed on or ahead of schedule.

Disciplined software development has two components: individual discipline and team discipline. This report first defines disciplined development. It then reviews what practices are implied by individual discipline and reviews a technology, Personal Software Process (PSP) that supports individual discipline. The report then discusses the issues involved in forming and maintaining development teams and the potential of teams made up of disciplined individuals. The Team Software Process (TSP), a technology that supports teams of PSP trained engineers, is then reviewed.

PSP is a technology focusing on process improvement of the individual software developer. Individual discipline is required to practice PSP. This report describes PSP and the effect of PSP on key performance issues of software engineers. Using PSP, engineers develop software using disciplined, structured methods enabling them to deliver high quality software in a timely manner. TSP extends PSP by realizing the potential of software teams composed entirely of disciplined individuals. TSP shows PSP trained engineers how to develop an effective team to consistently produce high quality software products on schedule and within budget. Watts Humphrey of the Software Engineering Institute (SEI) developed these two technologies as an extension to his earlier Capability Maturity Model (CMM)® work. PSP is described in his book A Discipline for Software Engineering.

This report is intended to be an unbiased summary of published information on PSP and TSP. The intended audience is a PSP neophyte, an individual who knows very little about PSP and TSP, but who wants to understand more. Because, this report summarizes all known information it can also be viewed as a resource for the PSP/TSP community. The body of the report includes a high level PSP and TSP tutorial, shorter than a textbook, yet longer than currently available reports and papers. Six appendixes are included. They contain background (acronyms, glossary, and bibliography) and other support information (PSP vendors, WWW resources, and STSC services). The support information is subject to change.

Table of Contents

iiExecutive Overview

1
Disciplined Software Development
1
1.1
Discipline
1
1.2
Enabling Team Success
1
1.3
Individual Skill and Discipline
2
1.4
Team Work
3
1.5
Team Building
3
1.6
Self Directed Teams
4
2
Technologies for Individual Discipline
5
2.1
PSP
5
2.1.1
PSP History
5
2.1.2
PSP Process
5
2.1.3
PSP Disciplines
9
2.1.4
PSP Training
14
3
Software Team Technologies
17
3.1
TSP
17
3.1.1
TSP Process
17
3.1.2
TSP Technology Status
23
3.1.3
Adopting TSP
23
Appendix A
Acronyms
26
Appendix B
Glossary
27
Appendix C
Annotated Bibliography
30
Appendix D
Books, Articles, and Papers
32
Appendix E
WWW Links
39
Appendix F
PSP Venders and Tools
40
Appendix G
STSC PSP Services
44

1 Disciplined Software Development

Since it is individuals that develop software, it is the software engineering skills and individual discipline that each individual brings to a software project that affects that project’s success. For large multi-person projects the project’s success can also be affected by how well the project’s staff works together as a team. Software engineering as a field has studied many techniques involving such activities as management, design, and testing. These all build software-engineering skills. But with one exception, there has not been attention paid to the impacts of individual discipline in software development. That one exception is Watts Humphrey’s PSP and TSP technologies. PSP addresses individual discipline. TSP extends PSP by realizing the potential of software teams composed entirely of disciplined individuals.

1.1 Discipline

The word discipline derives from the Latin discere, to learn. In the American Heritage Dictionary, there are several (seven nouns and three transitive verbs) alternate meanings of discipline
. Of interest is “a branch of knowledge …”. This describes the sum total of software engineering knowledge accumulated over the past half century. A second meaning describes attributes that an individual can possess. Here discipline refers to the “controlled behavior resulting from … training” that “ … is expected to produce a … pattern of behavior, especially … moral … improvement.” When applied to software engineering, this discipline refers to an attitude of individual responsibility for personal excellence, where excellence includes such ideals as high productivity, high quality, and the ability to build plans that accurately predict reality. A third meaning of discipline implies the antithesis of software hacking, “a state of order based on submission to rules and authority.” This implies that the individual submits to following a defined development process rather than what “feels” right. All three meanings of discipline are intertwined. The disciplined (state of order) development process should be based on the discipline (branch of knowledge) of software engineering. This state of order discipline can only be achieved if the individual developers possess personal discipline.

Two additional meanings apply to how a team maintains discipline. Parents often discipline their children. This is a “punishment intended to correct and train.” In the context of working as a team, a member may be disciplined in this manner. A team may also have “a systematic method to obtain obedience,” like military discipline. In this case the team would be enforcing a software-engineering discipline.

1.2 Enabling Team Success

Teams of individuals develop all software of interest. Today’s software systems are simply too big to be developed by one individual. A team is a collection of two or more individuals performing interrelated tasks to achieve a common specific goal. That goal is the completion of a specific software project
. The interrelated tasks are the review, design, testing, coding, and analysis (to name just a few) activities involved in producing a software system. The problems that teams run into are common and as old as time itself: teams have interpersonal problems, teams have communication problems, teams have difficulty in optimizing the order of their interrelated tasks, and individual team members fail in accomplishing their assigned tasks.

Organizations that address or at least control interpersonal and communication problems within their teams do two things well. They know how to build teams and they are able to instill a culture of teamwork. The idealized mechanism for optimizing the order of interrelated team tasks is for the organization to have a set of defined processes that are tailored by the team to produce a detailed plan. The defined processes both describe in general terms what tasks need to be performed and capture organizational standards. Finally, individual team member capability can be addressed by an emphasis on fundamentals and by hiring individuals with both raw innate abilities and the temperament to be team players. Table 1, Success Factors for Teams, lists examples in software development and two non-software domains of each of these success factors. In the remainder of this section, these success factors, examples and applicability to software teams will be discussed.

	Success Factor
	Software Development
	American Football
	Military

	Individual Ability
	Abstraction forming Intelligence
Language Skills
	Speed, Strength, Size, Agility
	Strength, Endurance, Intelligence
Eyesight,

	Individual Fundamentals
	Review, Design, Requirements Control, Schedule Understanding
	Blocking, Tackling, Passing
	Bomb Dropping, Marksmanship

	Detailed Plans
	Project Plan
	Plays (blocking schemes, pass routes, etc.)
	Air Tasking Orders

	Defined Processes
	Organizational Software Process
	Nomenclature, Weekly Practice Schedule, Playbook
	TOs (Tech Orders), Military Lifestyle, standard tactics

	Team Work
	Weekly Project Meetings
	Periodic Huddles (allow coordination)
Game Plans (emphasize team strengths)
	Unit Training

	Team Building
	Project Kickoff
	Spring Training, Weight Training, Practice Time
	Unit Training

Table 1, Success Factors for Teams

1.3 Individual Skill and Discipline

Individuals make up teams. Team accomplishments are built on the individual accomplishments of individual team members. Two factors; the individual’s innate ability and the individual’s use of effective technical methods govern individual skill. In American Football innate ability is measured by such factors as speed, strength, and size of the ball player. All of these ability factors can be nominally increased through off-season training programs
 but their limits are essentially governed by the ballplayer’s genetics. Different positions (e.g., interior lineman vs. wide receiver) require different sets of abilities. In the military the “position” of the team member similarly requires different abilities. Excellent eyesight, intelligence, strength, and endurance are good innate abilities to possess in the military domain. Pilots require eyesight and the intelligence necessary to instantly grasp the flight dynamics of their aircraft. Foot soldiers require the strength and endurance to haul their gear around. In software development, the intelligence to form useful abstractions is the fundamental innate ability. For complex tasks, innate ability is also composed of some basic skills. For pilots this is known as airmanship, the basic ability to fly an aircraft and react to unexpected conditions. For software professionals examples of these include language and design notation skills.

Using effective technical methods is equivalent to mastering the fundamentals of one’s domain. Good coaches always stress the fundamentals because it is these fundamentals that separate individuals with similar innate abilities. In the military an example is marksmanship. In American Football examples include blocking and tackling. But in software engineering there is no consensus. We propose the following software engineering fundamentals: review, design, requirements control, and schedule understanding. Review is a means of assuring quality, design is a means of building quality, requirements control is a means of building the right thing, and schedule understanding supports understanding when the activity will be completed.

The need to practice should be obvious. The best football and military teams arrange their practices and training so that their respective fundamental skills are drilled into their team members. Conversely, most software teams do not even recognize that there are software engineering fundamentals that must be practiced.

An individual’s discipline governs both how consistently the fundamental skills of his profession are practiced and the desire to constantly improve. This is the “controlled behavior” meaning of discipline. The desired behavior is twofold. First, if the individual always applies the fundamental software engineering practices with no exceptions, then the benefits of those fundamentals can be fully achieved. Second, if the individual possesses an attitude that continual improvement is a professional requirement, then the individual will be all that he can be.

In software development the term software hacking is used to describe undisciplined development
. Hard-learned software engineering knowledge is ignored in favor of instant gratification. It is simply more satisfying to develop software by coding some, getting it to compile, and debugging by running some tests versus taking a methodical proven software engineering approach involving planning, design, and review.

1.4 Team Work

An organization’s processes and a team’s detailed plan describe how the various team members interrelate. The organization’s process captures the high-level plan outlines, the organization’s standards, and mechanisms for capturing data about project performance. The team produces a detailed plan by tailoring the plan outlines in the organizational process to project specifics. In American Football the proverbial “playbook” is the defined process. Each week a game plan consisting of a subset of plays from the playbook is created. The plays themselves may be tailored to counter the strengths and attack the weaknesses of the opponent. In the military context various standard tactics and procedures exist. Example air tactics and procedures would be stand-off bombing to minimize danger to the air crew, coordinated bombing attacks to improve the probability of targeting success, and air refueling to increase range or time in flight. In a combat situation an air tasking order is a detailed plan that coordinates all these air superiority, sensors, refueling, and bomb delivery missions.

In the software engineering context, the software process contains the high level plans, standards, and practices used by the organization. It might contain a life cycle process definition, a review procedure, and a coding standard amongst many other assets. A detailed plan for a software project would match the organization’s process to the project specifics and the identified team members. This scheme that differentiates processes from plans has several important attributes. Processes allow team members to know what to do and to train before the project begins. They can be optimized for mission success and are necessary for long term organizational improvement. Detailed plans are necessary for team coordination, are necessary if one wants to know the status of the project, and are required when replanning is necessary due to requirements change or some unforeseen circumstance.

1.5 Team Building

Building and maintaining teams is not an exact science. Team building has been extensively studied in the context of American sports and the military. It has not been adequately addressed in the software world
. In American sports as well as the military, teams are built using the “boot camp” model. Prospective team members are kept in close proximity to each other whilst they work on individual fundamentals and standard team processes. This is usually done in a harsh environment. The good coaches and drill sergeants emphasize the importance of working together and supporting other team members. If successful a team that supports one another emerges after this “boot camp” period. There is team ownership in the team’s goals, the team is self-led, and there is a sense of democracy within the team. In American sports team goals might be winning a championship. In the military its insuring the safety of ones squadron/platoon mates. In the professional office environment where software is developed, a “boot camp” would be impractical. But the team leader must aspire to building a team that works together and who’s team members support each other.

1.6 Self Directed Teams

The advantages of self-directed teams, where the team is empowered to make its own decisions, have been known for some time
. This includes both a happier, creative, and motivated workforce and an organization that is both more effective and has earned the allegiance of its workforce. Self directed teams, by definition, manage themselves. They must plan and track their work, they must identify risks to project success, they must resolve problems as they arise, and they must aggressively work towards their goals. Critically, the team must demonstrate to management that the team is managing itself. If it does not do so, then management will start managing the project and the advantages of being a self-directed team will be lost.

In software, the team goal should be (explicitly) delivering high quality software product on time. Self-leadership of a team means that the team internally imposes the discipline necessary to achieve the team’s goals. This discipline does not have to be imposed from outside the team. In the software context this implies that management has responsibility for selecting the team’s project but the team has sole responsibility to insure timely delivery of a high quality product. Within the team, democracy is at work. There is no proscribed caste system. Team members gravitate to team roles that best fit their skills and temperament. There is a mutual respect amongst team members towards the citizenship on the team of other team members. This is not to imply that there is a democratic vote on every issue before the team, but instead that a mutual common decision making process is in place.

2 Technologies for Individual Discipline

We are aware of two technologies whose goal is to enable individual discipline. One is general purpose, the other specific to software development

The Franklin Covey system is a general-purpose system of individual discipline. It helps individuals organize their priorities, track their commitments, and manage their time. This technology includes books, training courses, and the ubiquitous day planner. While this technology is capable of helping software engineers it does not address the technical issues facing software engineers. It will not be discussed further.

Watts Humphrey’s PSP technology does address the technical issues facing software engineers. These issues are quality management and technical estimation. PSP is the topic of the remainder of this section.

2.1 PSP

There is no one best way to describe the PSP that captures its depth and breadth. It is more than just a process description with associated goals, entry and exit criteria, process steps, and process artifacts. To understand PSP one must also understand the quality, estimation, and process improvement models it is built on. Over time the realization that PSP is more akin to a philosophy than a process is reached. A philosophy that entails both an analytical disciplined approach to the creation of high quality individual work products and expectation that aggressive personal commitments are made and kept.

In this section we will explore where the PSP came from, what the PSP process is, the models PSP was built on, and finally how it is taught. This section only highlights some of the principles that make up PSP. To fully understand PSP one must both read the book, A Discipline for Software Engineering, and take a PSP course from a knowledgeable PSP instructor. If the reader has received PSP training, we hope this section will provide new insights into PSP. If the reader is new to PSP, then we hope this section provides high level insight as to what PSP actually is.

2.1.1 PSP History

The Personal Software Process (PSP) addresses an individual developer’s ability to consistently deliver high quality software products in a timely manner. Its focus is on instilling discipline in the software development process. As of this writing, PSP is a relatively young technology. While there is growing tool, training, and consulting support, the technology is by no means mature. New users should expect to find rudimentary but sufficient tool support.

The technology was developed by Watts Humphrey of the SEI as an extension to his earlier CMM work. In response to the observation that the CMM was not applicable to small organizations, Watts developed an optimizing (CMM Level 5) software development process for the smallest possible (one person) organization. He called it the PSP. He first taught the PSP as a Carnegie Mellon University (CMU) graduate level class in the early 1990s. His personal experiences and experiences of his initial classes, became the basis for A Discipline for Software Engineering

 published in 1995.

The SEI developed and began offering an industrial level course and PSP instructor training in 1995. Various university and community college courses were also developed based on the textbook.

2.1.2 PSP Process

It is not the intent of this section to formally define the PSP process using one of the many formal process description languages and notations such as ETVX or IDEF. Instead we wish to informally describe the process so that a reader can understand when the process should be used and who should use it. We would also like to impress upon the reader the quality and depth of the process. The reader is referred to the text, A Discipline for Software Engineering, for a complete process description.

2.1.2.1 The Software Problem

Software already is and is becoming more critical to our society. Yet software development efforts historically have had and continue to have quality, schedule adherence, and cost adherence problems. One can empirically observe that (1) these quality, schedule, and cost problems are traceable to individual actions made by individual software developers and (2) that software developers use intuitive and undisciplined
 development methods. PSP attacks the software problem by providing tools to individual developers that promote disciplined software development.

PSP exists to assist individuals in becoming better software engineers. It helps individuals control, manage, and improve the way they develop software. The goal of PSP is to enable individuals to consistently produce higher quality software while consistently meeting cost and schedule estimates.

2.1.2.2 PSP Scope

The simplest description of PSP is that it is a process that describes how an individual should develop software. It applies to an individual – not a group or an organization. It applies to the development of software – not hardware, written reports, or any other individual activity
. It incorporates the great software engineering principles - design before code and review early and often. PSP applies to the software development phases from assignment of a programming problem to completion of individual unit test. Much of the software development lifecycle is outside the scope of PSP. Most significantly all the portions of the lifecycle dealing with development teams and the development organization is outside the scope of the PSP. Figure 1, PSP’s Scope in a Project LifeCycle, demonstrates this graphically.
[image: image1.wmf]Requirements

Analysis

High Level

Design

PSP Development

 Understand

 Requirements

 Design

 Code

 Compile

 Unit Test

Integration &

System Test

Module Assigned to

an Individual for

Development

Module Delivered to

Integration Test

PSP

Development

Scope

Figure 1, PSP’s Scope in a Project LifeCycle

PSP applies to the modules that individual software engineers build. It is intended to be used to build the final software solution, not an initial prototype. In this context the requirements for the modules should be well understood before PSP use begins. A philosophy of creating a software artifact, where the artifact will be written correctly the first time, is used. This contrasts to a philosophy where the software artifact is created and then debugged enough so that it is acceptable.

2.1.2.3 PSP Process Elements

A process can be defined as “a set of partially ordered steps, intended to meet a goal”
. In the PSP’s case the goal is to enable individual developers to consistently deliver high quality software products on time. The “set of partially ordered steps” is the process elements found in appendix C of A Discipline for Software Engineering. There are seven hierarchical PSP process levels, with each higher level building on the prior level. There are 31 scripts, eight summary forms, three logs, nine templates, 20 instructions, two standards, and four checklists defined for the “standard” PSP process. Table 2, PSP Process Element Types, describes the purpose and provides examples of each of the PSP process elements.

	PSP Process Elements
	Purpose
	Comments / Examples

	Logs
	To record process measures.
	Time Log, Defect Log, and Issue Tracking Log.

	Instructions
	Directions for completing various PSP Process Elements (Logs, Forms, and Templates).
	Every template, form, and log has associated instructions.

	Scripts
	A process description (steps to perform, purpose, entry and exit criteria) suitable for human enactment.
	Every PSP process level has scripts for the overall process, planning, development, and postmortem. In addition there are PSP3 high level design and design review scripts, and a PROBE Estimating Script.

	Forms and Templates
	A standard mechanism for recording and using data. Forms are used when the amount of data is fixed, templates when the amount of data is indeterminate. These help direct the planning and development processes, by identifying the critical data that must be recorded and analyzed. After a project is complete they are used to record project actuals.
	The seven PSP process levels each have a summary form. The Cycle Summary is a Form. Templates include the Size Estimating Template, Test Report Template, Task and Schedule Planning Templates, PIP, and four design templates.

	Standards
	A defined guideline for performing some action. Particularly useful when there are many equally valid ways of performing the action, but something can be gained by performing the action in an identical manner every time.
	Defect Type Standard, Coding Standard, and LOC Counting Standard.

	Checklists
	A mechanism that assists one in completely and accurately following some procedure.
	Design and Code Review Checklists.

Table 2, PSP Process Element Types

Much of the bulk of the PSP is an artifact of how it is taught, where the PSP process gradually evolves. At any one time, engineers are using only a subset of the PSP’s process elements. For example, after training, engineers use modified versions of either the sixth (PSP2.1) or seventh (PSP3) PSP versions. This translates into five (or seven) scripts, one (or two) planning form(s), three logs, one planning template, one test reporting template, four design templates, and two tailored review checklists.

2.1.2.4 PSP Process Phases

In PSP an important distinction is made between development phase and development activity. The PSP phases are planning, high level design, high level design review, design, design review, code, code review, compile, test, and postmortem. They are sequential
. That is one cannot return to a prior phase once that phase has completed. PSP tracks time against phase, not activity.

Development activities refer to what the engineer is actually doing. If there are no defects then development activities and development phases are identical. However, when a defect is found, the development activities needed to correct that defect represent rework. Their time and any new defects are allocated to the current phase, not the activity.

Abstractly, there are just three PSP phases: planning, development, and postmortem. During the planning phase, a plan sufficient to make commitments is produced. During the postmortem phase, process data is captured to facilitate future planning and process improvement. The development phase is where the technical work occurs. It is broken into the design through test sub-phases, primarily because in so doing the software quality problem can be managed and controlled. A PSP like personal process for performing technical activities other than software development will have this same Plan -> Do -> Postmortem structure.

2.1.2.5 PSP Process Measures

In executing a PSP process only three measures are made: time, defect, and size. From these basic measures all PSP metrics are derived.

Time is captured on the time log in minute increments and allocated to the development phase being executed. Metrics based on time are critical in estimating schedule, calculating productivity, and in determining if sufficient effort is allocated to quality efforts.

Defects are captured on the defect log. A defect is described by a defect type, a textual description, the development phase injected, the development phase removed, the time spent fixing the defect, and if the defect was injected while fixing another defect. The type and description fields are used to create checklists that are used in the review process. The PSP principle is that individuals are prone to repeat the same types of mistakes and that by identifying these (the defect log) and then taking action (review checklist item) future defects have both a higher likelihood of being found and of being easier to fix when found. The time spent fixing defects is a measure of rework time. The phase injected and removed can be used to calculate defect injection and removal rates and phase yields. Managing these removal rates and phase yields is the process management technique that PSP uses to create high quality software.

Size is used to normalize certain metrics, chiefly productivity and defect density, and to create accurate estimates. Lines-of-Code (LOC) is the unit of measure. LOC is appropriate as a size measure because it is easy to build tools to measure the actual size, it lends itself to accurate estimates in the PSP context
, and there is a correlation between LOC size and both development effort and defect density.

2.1.2.6 PSP Process Artifacts

There are four types of process artifacts produced by the PSP process: a size database, a productivity database
, a defect database, and a summary database. The defect database is used primarily for quality improvement. The size and productivity databases are used for planning. The summary database is used for both planning and process improvement.

The PSP size database is a permanent repository of the size, type, and number of methods of all objects previously created by a PSP practicing engineer. During the size estimation sub process the engineer estimates the type, number of methods, and relative method size of the proposed new objects. The data in the size database allows a size estimate to be created based on historical object size.

The PSP productivity database is a permanent repository of the estimated program size
, the actual number of new and changed LOC, and the actual time it takes to complete the entire process. Once a size estimate has been made the productivity database is used to estimate the time required to complete the entire process. Using this technique, time estimates can be made that are based on past performance.

The defect database is a permanent repository of all defects the PSP practitioner has made. It is used to develop review checklists, in the hope that the types of errors that the individual is prone to make can be caught just after they are made.

The summary database is a permanent repository of the plan summary forms created during the PSP planning phase and finalized during the PSP postmortem phase. Portions of the summary forms, primarily the To-Date fields, are used in building new plans. Other portions (e.g., yield, CPI, defect leverage) can be used to assess the process. Any fields on the form can be used to objectively identify process improvement opportunities.

2.1.3 PSP Disciplines

There are three important individual disciplines that the PSP technology undertakes to instill in its practitioners: a focus on quality, schedule adherence, and continuous process improvement. Schedule adherence is the first of these disciplines specifically addressed. An estimation technique is used that produces unbiased estimates based on past performance. In addition the estimator understands the potential error of their estimates. Simple techniques for building schedules based on these estimates and tracking progress against those schedules are discussed but not stressed during PSP training. The importance of quality in software development is the next major topic in the standard PSP introduction strategy. Techniques for early defect removal and numerous quality metrics are introduced. Effort estimation accuracy is improved by reducing the highly variable rework effort. PSP introduction uses a mechanism of continuous process change, where every change represents an improvement, to gradually change an individual’s initial behavior to a disciplined behavior. Towards the end of PSP introduction this philosophy of continuous process improvement is explicitly discussed and practiced. The remainder of this section discusses details of the PSP quality, estimation, and process improvement mechanisms.

2.1.3.1 PSP Quality Model

In PSP, quality is measured by defect density. A defect is defined as anything that if left unaddressed would lead to a nonconforming product. By differentiating little “d” defects (defects that are found during PSP development) from big “D” Defects (those found after PSP development), PSP’s quality strategy is illuminated. The PSP’s primary quality goal is to produce a Defect free product. The PSP strategy for achieving this goal is to remove defects as soon as possible after they have been injected instead of waiting to remove all defects in the compile and test development phases. PSP does not explicitly attempt to lower the total number of defects through any specific defect prevention activities
.

The PSP uses three tactics for producing Defect free software. First every technical work product is personally reviewed using a review checklist that addresses the types of defects most likely to be made by the individual developing the product. This takes the form of disciplined code reviews, disciplined design reviews, and disciplined high-level design reviews. These are not inspections
, because they are performed privately by the creator of the work product. Secondly, a design procedure is defined by the PSP. The procedure includes a design notation, design templates, and design verification techniques. Finally, the PSP engineer uses quality process data to control the quality of the final product. With PSP training engineers can monitor the actual number of defects injected and removed by phase against expectations. Review rates can also be optimized to remove as many defects as practical.

All defects are counted and classified by phase injected and phase removed. Analysis of these counts is the primary indicator of final product quality. Defects are typed using a PSP defect type standard. This typing standard includes such classifications as syntax, interface, and function. The time it takes to fix a defect is also recorded. The defect type and fix time are primarily used as input into building the review checklists. Finally, it is determined if a defect was injected during the fix of an earlier defect. From this the defect injection rate of defect fixes can be determined.

It is critical to count all defects because this count is the primary predictor of final product quality and indicator of the efficacy of the various process phases. Defect density by phase is the critical PSP quality management metric. Each PSP phase can be modeled as injecting and removing defects. The development phases, high level design, design, and code, inject defects
 at a rate corresponding to the size of the product. Typical total defect rates are between 50 and 200 defects injected per thousand lines of code (KLOC). This corresponds to one defect in every 5 to 20 lines of code (LOC).

The quality phases design review, code review, compile, and test, remove defects at a rate corresponding to the defect density at the beginning of the phase. The PSP rule of thumb is that the review phases should find between 50% and 75% of existing defects, compile will find about 90% of existing coding type defects and less than 10% of existing design type defects, and test about 50% of existing defects. Defects are also injected as defects are removed. Typically, a new defect is injected 10% to 25% of the time that a defect is fixed.

Yield is the metric for analyzing the success of a phase in removing defects. Yield is the percentage of defects present at the beginning of the phase removed by that phase. The overall process yield is the percentage of total defects removed before the first compile.

One of the controversial aspects of PSP is the proscription that one must perform the code review before compiling. This is always the most contentious discussion during PSP training. The argument for compiling and then reviewing is that the compiler is more efficient at identifying errors. The arguments for reviewing and then compiling are far more convincing. The trump argument is the empirical observation that higher quality products result from reviewing and then compiling versus compiling and then reviewing.

Other arguments include productivity, human nature, and quality verification. If one assumes that disciplined reviews will be conducted, then there is no productivity advantage (in fact there is a potential disadvantage) to reviewing after compile
. The human nature argument posits that once the engineer believes that the product is defect free (it passed compile) then he is less likely to perform a disciplined and complete review. We believe this argument explains the empirical evidence that indicates that reviewing first produces higher quality product. Finally, from a process driven development perspective, the compiler can be viewed as the only available unbiased quality verification tool. From this perspective the number of compiler defects found in the first compile is the only opportunity to objectively measure quality in the development process.

2.1.3.2 PSP Estimation Model

PSP’s estimation processes are based on the assumption that future process performance will be like past process performance. Thus PSP planning effort is expended in measuring and capturing past performance and maintaining a planning framework that can use that past performance data in creating new plans. This general past-performance-based planning can be used for any repetitive personal process. This is graphically demonstrated in Figure 2, A PSP Like Planning Framework.

[image: image2.wmf]Planning

Develop

Product

Postmortem

Requirements

Product

Historical

Performance

Figure 2, A PSP Like Planning Framework

The “software” portion of the PSP estimation process relies on the empirical observation of the correlation between the size of software developed (as measured in LOC) and the effort required to develop the software. Thus the individual software engineer first estimates the size of the new application and then applies his personal historical productivity rates
 to the estimated size to obtain estimated effort. This is demonstrated graphically in Figure 3, The PSP Planning Framework
.

PSP uses an estimating technique called PROxy Based Estimating (PROBE)
. The remainder of this section will briefly highlight this technique.

[image: image3.wmf]Conceptual

Design

Develop

Product

Postmortem

Requirements

Product

Historical

Size Database

Estimate

Product Size

Estimate

Effort

Historical

Productivity

Produce

Schedule

PSP Planning

Framework

Historical

Estimation Biases

Figure 3, The PSP Planning Framework

The size estimation step is not pure guesswork. The size estimate is based in part on the historical size of software objects that the individual has created in the past. The estimator maintains a database of past software objects that the estimator has built. The database includes type and size information. Relative size ranges can be determined in a straightforward manner by computing statistical deviations (mean and standard deviation) of the past historical sizes. To estimate size, the estimator first uses engineering judgement
 to determine the software objects that are needed, their type, and their relative size
. It is then straightforward to combine these engineering judgements with the historical size ranges to obtain a first order size estimate. The estimate is further refined, by using averaging or linear regression methods, to account for individual size estimating biases.

The effort estimation step takes the size estimate and uses historical productivity rates and an adjustment for historical estimation bias to create an effort estimate. The bias adjustment uses either averaging or linear regression in the same fashion as the size estimation bias adjustment.

There are two PSP estimation requirements. One is that the estimation technique produces unbiased estimates. That is the sum of the errors of many PSP estimates is very close to zero. In practice this means that if PSP estimation techniques are used to estimate all the parts of a large project and then summed together, the estimate for the project will be very accurate. The PSP estimation framework meets this requirement by including averaging or linear regression techniques based on historical data in both size and effort estimating procedures.

The second PSP estimation requirement is that the estimator understands the expected accuracy of single estimates. One of the side benefits of maintaining the data necessary to perform linear regression is that the same data can be used to calculate statistical prediction intervals
.

2.1.3.3 PSP Process Improvement Model

The PSP is also a process framework that enables continuous personal process improvement. The PSP includes specific forms, instructions, and process steps for capturing process improvement ideas. The textbook describes a process improvement process. PSP training (ten programs, midterm and final reports) is designed to allow students to both practice and to see the value of process improvement.

Process improvement is a very important concept to the PSP. One of the first process changes introduced is the Process Improvement Proposal (PIP) form, a mechanism for recording process improvement ideas. Steady change, small incremental change, and quantifiable change characterize PSP process improvement. One periodically analyzes his process and accumulated PIPs to identify improvement goals and opportunities. The improvement goals should be expressed quantitatively to allow before and after comparison. The sum of all proposed process changes should be relatively small as compared to the existing process or it will be very difficult to effect the change. Students learning PSP experience these principles as the PSP process evolves during PSP training.

When comparing the PSP to its earlier technological cousin, the Software Capability Maturity Model (SW-CMM), many differences are highlighted. The SW-CMM is aimed at organizations. The PSP is aimed at individuals. The SW-CMM is frequently perceived as an assessment technology. This is not surprising, since the tasking that led to the creation of the SW-CMM was to devise a method for the DoD to use to select software vendors. The SW-CMM that was created had dual purposes, assessment and improvement. Conversely, the vision behind the PSP saw PSP as only an improvement technology. The SW-CMM’s documentation is structured around maturity levels and process areas, and discussion revolves around goals. It purposefully does not discuss how to achieve those goals. PSP, on the other hand, is more practical. It describes specifically how to perform certain actions. Goal discussion is subordinate to process definition.

But the PSP and the SW-CMM are technological cousins. The PSP implements every non-organizational
 Key Process Area (KPA). PSP is a repeatable process (SW-CMM level 2), because new task assignments that are like previous assignments have a high probability of being completed on time. On an individual level, repeatable processes are characterized by processes that support planning and tracking
. PSP is also a defined process (SW-CMM level 3), because management and engineering activities are documented and standardized. On an individual level, an integrated set of defined processes and the software engineering practice of technical review characterizes defined processes
. PSP is also a managed process (SW-CMM level 4), because the software process and work products are the subject of detailed measures and are quantitatively understood and controlled
. Finally, PSP is an optimizing process (SW-CMM level 5), because continuous process improvement is enabled by quantitative process feedback. On an individual level this implies quantitative process management and Defect prevention
.

2.1.4 PSP Training

The PSP is taught to engineers and students in a series of lectures, assignments, and reports. The lectures essentially follow the textbook chapters. There are usually ten assignments, although some instructors use a format with nine assignments. During the assignments the students use a progressively more complex PSP process to develop ten software programs requiring a significant effort to complete (between 2 and 6 hours per assignment, if no significant programming errors occur). Initially, the students use the PSP0 process, which is essentially their current software development process, with new rules for recording time and defects. After three assignments they have enough data to begin to use the PROBE method and make size and time estimates. After six assignments they begin to address quality in a quantitative manner. The midterm and final are devoted to analyzing process data and to defining and improving a process. Table 3, PSP Training Modules, details the typical class assignment structure.

	Process Level
	Assignments
	What the student learns

	PSP 0
	Assignment #1
	Time and Defect recording. Follow the process.

	PSP0.1
	Assignment #2
Assignment #3
	Size Recording.

	PSP 1
	Assignment #4
	Size and Time Estimation

	PSP 1.1
	Assignment #5
Assignment #6
	Task and Schedule Planning

	
	Midterm Report
	Develop a process for analyzing process data and use it to analyze process data from first 6 assignments.

	PSP 2
	Assignment #7
	Personal Reviews

	PSP 2.1
	Assignment #8
Assignment #9
	A Formal Design Process

	PSP 3
	Assignment #10
	Cyclic Development

	
	Final Report
	Improve the process for analyzing process data and use it to analyze data from entire class

Table 3, PSP Training Modules

The learning process is an example of gradual process evolution, starting simple and moving where necessary towards complexity. Attempts have been made, to skip the process evolution, and to start at the final process level and thus shorten the course. This has not worked, in part because the students do not have their own personal data to convince themselves that the additional process complexity adds value.

One may ask why not just let the individual develop the software using whatever process they want. After all, individual processes belong to the individual. Empirical evidence indicates that after PSP training engineers develop software of much higher quality and are much better able to predict the effort required to develop that software
. We believe that this insight into personal process ownership is the root cause of why PSP training and adoption is hard. It is very hard to get individuals to change their individual work practices.

Our opinion is that the crux of PSP training is not learning the methods and processes but changing individual behavior. One might restate the PSP technology goal as to take undisciplined programmers, who produce poor quality software and deliver it late and change them into disciplined engineers that produce high quality software on time. This does not happen overnight or in a short training course. The strategy of the training course is to provide those undisciplined programmers with the tools necessary to recast themselves into disciplined engineers and to provide them with personal evidence that they are disciplined engineers. The personal evidence is critical because it is needed if the behavior change is going to stick.

Does PSP really work?

Proponents of PSP cite many benefits from the use of a PSP like technology. Qualitatively, these include better individual planning, better individual performance tracking, an ability to resist over-commitment, a personal understanding of quality, a commitment to building quality products, and an understanding of continuous process improvement. Qualitatively, PSP promises to help individuals to estimate better, improve product quality, and improve their individual software development process quality all with no loss in productivity.

Using training data from 298 PSP engineers, the SEI has studied the quantitative effects of PSP (The Personal Software Process (PSP): An Empirical Study of the Impact of PSP on Individual Engineers, Will Hayes and James Over, CMU/SEI-97-TR-001, 1997). The accompanying table, PSP Training Results, summarizes their findings. The change covers the engineer’s initial performance as measured at the beginning of the class through the engineer’s final performance as measured at the end of the class. The value is the median change, half the engineers studied did better and half did worse.

	Effect
	Median Change

	Effort Estimation
	Improved by 1.75x

	Size Estimation
	Improved by 2.5x

	Product Quality
	Improved by 2.5x

	Process Quality
	Improved by 50%

	Productivity
	No Change

PSP Training Results

[image: image4.wmf]10

9

8

7

6

5

4

3

2

1

0

10

20

30

40

50

60

70

80

90

100

110

120

Mean Compile + Test

PSP Level Mean Comp + Test

Defects Per KLOC Removed in Compile and Test

Program Number

Mean Number of Defects Per KLOC

PSP Product Quality Training Improvement

The accompanying chart, PSP Product Quality Training Improvement, captures the median product quality for the ten PSP training exercises. Similar charts are discussed in the SEI report for the other improvement dimensions. It is assumed that the first three exercises represent the engineer’s base practice. During this time the focus is on data gathering and following a defined process, not on quality improvement. By the end of the training, when the engineer has gained a personal understanding of quality and has made a commitment to building quality products the product quality has significantly improved.

Finally, early results from a smaller sample size (PSP in the Workplace: Software Engineering at a Personal Level, Will Hayes, 1998 SEI Symposium) (15 engineers, >60KLOC, >4K hours of effort), in which data from the post training industrial projects is analyzed indicates that all the PSP quantitative improvements are hours of effort), in which data from the post training industrial projects is analyzed indicates that all the PSP quantitative improvements are sustained from training to the workplace.

Additionally, early published results (Pat Ferguson, Watts S. Humphrey, Soheil Khajenoori, Susan Macke, Annette Matvya, “Results of Applying the Personal Software Process,” IEEE Computer, May 1997, pp. 24-31.) indicate that PSP can have a positive impact on project results

3 Software Team Technologies

Once engineers have been trained to act in a disciplined manner the issue becomes one of building a team that makes use of the engineers’ discipline. This begs the question of technologies that support team building and team maintenance in a software development context. These technologies would support team building, support team maintenance, and bring the resources of teams to bear on the issues that affect software development efforts. Team building activities are those that build a common understanding of team goals, objectives, and practices and build team trust amongst team members. Team maintenance activities are those that maintain team direction towards the team’s goals and objectives and enforce the team’s values. A project leader could use technologies in this domain when building a project team or to address or understand team dysfunction.

We are aware of only one technology that belongs in this domain
, the Team Software Process (TSP). Watts Humphrey of the SEI began development in 1996, after work on the PSP had been completed. It became apparent that groups of PSP trained engineers needed direction in harnessing their personal discipline. Issues such as how to combine several individual plans and how to roll up quality metrics needed addressing. Opportunities related to detailed planning and quality analysis done by the engineering staff were present. While none of these issues were individually difficult, standards and directions were needed. TSP shows great promise but is still in field trial.

3.1 TSP

Earlier we discussed six factors that must be addressed to build a successful team. TSP specifically addresses four of them, PSP another one (PSP training is required for all software members of TSP teams), and one is left unaddressed. The team building and team working activities needed to address interpersonal and communications problems are explicitly addressed by TSP. The defined processes and detailed plans needed to order interrelated tasks are explicit requirements for and outputs of TSP. The effective technical methods needed to assure the accomplishment of individual software taskings are those that are taught by PSP. The TSP and PSP are silent with regard to an individual’s innate ability. The assumption is that the organization can hire smart software engineers and staff the project teams appropriately.

PSP is required for all TSP team members
. They need to build quality components, make unbiased estimates, and make accurate measures. They need to understand how to follow a process script. The TSP launch process provides scripts to build a team, and TSP includes process assets that provide effective software engineering methods, if the team’s organization does not have these assets. The TSP weekly status meeting script enhances teamwork. TSP also continues PSP’s quality focus. Individual quality data is rolled up to the project level and emphasis on quality continues in a team environment. TSP includes mechanisms, such as goal establishment, the customer interface manager role, and risk management, which force the team to focus on the project’s true objectives. Finally, TSP provides mechanisms to roll up the team members detailed PSP schedule, planning, size, and quality data to the project realm.

3.1.1 TSP Process

Like the PSP, the TSP contains process scripts, forms, and standards. The scripts capture process steps and are meant to be tailored. PSP training is generally required to fully understand the process language. The forms serve to capture process data and the standards to enforce process discipline.

To an outside observer there are several observations that separate a TSP project from a non-TSP project. The formalized Launch and Relaunch process is obvious. Less obvious is the focus by project members on detailed schedule and quality tracking. While many other projects have tracked schedule and a few have tracked quality, it is the detail and pervasiveness of the tracking amongst all the team members that differentiate TSP projects from these other projects.

3.1.1.1 Launching a Project

A TSP Launch consists of a series of meetings with formal agendas and goals in which team building and detailed planning occur. Launching a project is not a new idea. It has always occurred under names such as project kickoff. Project teams would meet and decide in an ad-hoc manner how the project was to be run. TSP is different in that the launch process is formalized and since all team members have been PSP trained a level of detail in schedule and quality planning previously unattainable is now possible. It is during the launch that team building occurs, the team’s processes are defined, and a very detailed plan is built.

Watts Humphrey has cataloged a list of questions that all software teams must address
. They are detailed in Table 4, Common Software Team Building Questions. The TSP Launch scripts call for all of these questions to be addressed. The TSP process answers some. Team members’ energies are focussed on answering the remainder and not on identifying questions. The questions are addressed in an orderly manner during project startup so answers are in place before they are needed. On a software team, assuming that the team’s individuals already have a desire to be team players, answering these questions is the critical team building activity.

	· What are the team’s goals?

· What are the team’s roles?

· Who fulfills the roles?

· What responsibilities come with each role?

· How are team decisions made and issues settled?

· What team standards and procedures are needed?

· How are team standards and procedures established?

· What are the team’s quality objectives?

· How does the team track quality?

· What does the team do if quality is not achieved?

· What processes does the team use?

· What development strategy does the team use?

· How does the team perform design?

· How does the team integrate and test the product?

· How does the team produce its development plan?

· How can the team minimize schedule?

· What if the team’s plan does not meet management’s objectives?

· How does the team manage risk?

· How does the team determine status?

· How does the team report status to management and the customer?

Table 4, Common Software Team Building Questions

During the launch a number of items are produced. The team first meets with the customer and management to gain an understanding of both the product objectives and their organization’s business goals. A written set of team goals is produced.

The team then decides how it will manage itself by assigning specific team members identified areas of responsibility. In TSP these are called roles. They include Customer Interface Manager, Design Manager, Implementation Manager, Planning Manager, Process Manager, Quality Manager, Support Manager, and Test Manager. All team members, except the team leader are assigned at least one role as primary or backup. The team leader’s role is to ensure that the team is functional and working towards its goals. The team leader also interfaces with the organization, obtaining necessary resources and support.

The team next produces a high order project plan. It consists of a product conceptual design, a general development strategy, and initial size and effort estimates. The team identifies the process that will be used to develop the product. The team can use its organization’s process assets, assets from a TSP set of process scripts, or it can develop new assets. The software tools needed to support the development process are explicitly identified.

A quality plan is produced. This quality plan extends several PSP quality concepts; yield by phase, review rates, and defect density by phase, into the team realm. It also adds inspection rate, Quality Profiles
, and percent defect free. Inspection rate is analogous to review rate but applied to team inspections rather than individual reviews. Quality Profiles capture on a module basis various process metrics that together imply high quality modules. These metrics address the software engineering quality principles that sufficient time should be spent on design, that sufficient time should be spent on review activities, and that compile and unit test defect densities should be low. Percent defect free captures on a phase by phase basis the percentage of modules in the project that are defect free.

The team produces a detailed project plan covering the project until its end. This is a top down plan that accounts for the product conceptual design, the development strategy, and the tasks identified in the team’s process definition. Major schedule milestones are identified. A schedule plan listing project hours per week is produced
.

The team then produces a detailed next phase plan for each individual engineer and for the team as a whole. The next phase usually ends at a major project milestone. Another view is that the next phase covers the planning horizon, that period of time for which a detailed plan can be produced. If the team knows or anticipates that extensive replanning will be necessary in the future then the detailed plan need only extend to that horizon. A project relaunch should be scheduled for that horizon point. At this time, detailed plans for the next project phase (planning horizon) will be produced. Each engineer builds his own plan and eventually will defend that plan to the entire team. This is one of the mechanisms by which individual ownership in the plan is built. Detail is added to the plan by dividing the tasks into small increments, typically of less than ten hours, so that each engineer is completing two to three tasks per week. Finally, the team meets and reviews each team member’s plan, balances the plans if any one engineer is overtasked, and consolidates the individual plans into one team plan.

The team analyzes the project’s risks, assigns team members to track risks, and if necessary develops mitigation and contingency plans. Finally, the team presents its plan to management for approval and or comments. One of the principle issues facing self directed teams is keeping management informed so that management sees the team as managing itself.

3.1.1.2 Weekly Status Meeting

The weekly status meeting is the critical ongoing team working activity in a TSP project. It is during this meeting that the team meets, replans, enforces the team’s values, tracks progress, and understands quality. All team members attend. They should all come away with an understanding of both project and individual team member status and progress. They are reminded of what tasks are upcoming. They should understand project risks and issues. The meeting provides a forum for team decisions to be made.

A close analogy may be an American football huddle. The team meets; in football away from coaches and the opposition, in TSP away from management. There are rituals in the meeting. In football the location of each player differs from team to team but is usually absolute on any one team. Some teams hold hands to reinforce solidarity, some clap or yell when exiting the huddle. In TSP there is a standard agenda, and as in any work environment teams are free to form their own rituals. Team members motivate teammates during these meetings. Teams decide what they will accomplish over the next week during these meetings. Importantly, the meeting is as brief as possible.

During the TSP meeting the team reviews project status against the detailed plan developed during the launch. This review is at a team level and if necessary at individual levels. Specifically, the actual number of task hours delivered to the project, the actual earned value, the predicted earned value, the actual product size, product quality (defect density by phase and percent defect free), and process quality (yield by phase and Quality Profiles) are reviewed. These details are reviewed every week. The team has an accurate and detailed understanding of the status of the project. The quality data allows the team to address at a very early stage the software development risk of poor quality leading to very long test cycles.

This project review gets very personal, when necessary, by analyzing individual team member’s process data. This is where the true sense of the term “team” becomes evident. This analysis helps the team in understanding where specific breakdowns are occurring. It allows the other team members to provide specific advice and counseling. Individuals are motivated to not let their teammates down. But this will not occur unless the team is self-directed and all the team members are team oriented. It is critically important that these sessions be seen from a team building perspective and that no management is present.

Like all things PSP and TSP, a process script describes the weekly meeting. Minutes are kept. Unlike many non-TSP project status meetings, the TSP weekly meeting is brief. All the aforementioned material, and announcements, and meeting administration can be accomplished in less than one hour.

Quality Profiles

One of the goals of TSP is to produce a defect free product. A module’s Quality Profile is the metric used to predict if a module will be defect free. A Quality Profile is predictive in that its value is known immediately after a module has completed its developer’s unit test. It is suggestive, in that it can suggest potential quality issues and thus mechanisms to redress those issues. Quality Profiles adhere to software engineering dogmas that design is good, technical reviews are necessary for quality, and that high defect density in a test phase is predictive of high defect density in later test phases. Finally, early empirical evidence suggests that Quality Profiles do predict if a module is defect free.

A Quality Profile is composed of five dimensions. The ratio of design time to coding time captures the notion that design is good. Defects of requirements omission that would be found late in testing or in the field are prevented by good design practices. Perhaps the most uncontroversial software engineering theory is that good review/inspection practices are necessary for high quality. In a TSP software development lifecycle there are two creative phases: design and coding. A Quality Profile contains two review dimensions: the ratio of design review time to design time and the ratio of code review time to coding time. Good reviews take time and are used to ensure that quality work was performed during the creative phases. Finally, the density of defects found in compile and unit test confirms the quality of the module. The compile defect density measures the quality produced during the coding and code review phases. The unit test defect density measures the quality of the product as produced. The accompanying table, Quality Profile Evaluation Criteria lists specific criteria for the five dimensions. The maximum value of each dimension is one. For dimensions that are partially met there is a sliding scale from zero to one.

The Process Quality Index (PQI) is calculated by multiplying the five dimensions together. SEI has presented preliminary data (The Team Software Process (TSP) Tutorial, 1999 National SEPG Symposium, Watts Humphrey, Jim Over, Dan Burton, Part IV, slides 46 & 48) that indicate that PQI values between .4 and 1 predict that the module will have zero subsequent defects. The exact weighting for the PQI dimensions is an area of ongoing research.

	
Quality Profile Dimension
	Criteria

	Design/Code Time
	Design Time should be greater than Coding Time

	Design Review Time
	Design Review Time should be at least half of Design Time

	Code Review Time
	Code Review Time should be at least half of Coding Time

	Compile Defect Density
	Compile Defects should be less than 10 defects per thousand lines of code

	Unit Test Defect Density
	Unit Test Defects should be less than 5 defects per thousand lines of code

Quality Profile Evaluation Criteria

An Example Quality Profile

The Accompanying Quality Profile figure represents a quality profile from a small module developed by one of the authors (Please note that TSP module sizes are typically much larger, often by an order of magnitude than the data in this example). The associated process data is found in the accompanying table. The PQI for this module is .3. The graphical profile is a useful tool for someone like a quality manager who must review a number of modules and wants to focus his or her time efficiently.

[image: image5.wmf]Design/Code Time

Code Review

Time

Compile Defect

Density

Unit Test Defect

Density

Design Review

Time

Example Quality Profile

The figure graphically displays that initially the primary quality concern with this module was insufficient time spent in design review, leaving open the potential for design issues to be discovered very late in the life cycle.

In fact the developer had some difficulty in understanding the requirements and discarded several early design approaches. (The data does agree with this explanation. Design time is about 2.5 times that of coding time. This individual’s prior experience predicted that they should be approximately equal.) If we assume that the final design took as long as the actual coding time then design review time for the final design was sufficient.) Someone (a team leader or a quality manager) concerned with the quality of this module might use the profile to identify the design review issue, investigate it, and finally recommend a final inspection, to insure that the requirements were well understood and that the design reflects those requirements.

	Size
	160 LOC

	Design Time
	179 (minutes)

	Design Review Time
	36 (minutes)

	Coding Time
	74 (minutes)

	Code Review Time
	31 (minutes)

	Compile Defects
	0

	Unit Test Defects
	1

	Design Time to Code Time Ratio
	2.4 (Maximum allowable value is 1)

	2x Design Review Time to Design Time Ratio
	.40

	2x Code Review Time to Coding Time Ratio
	.84

	Compile Defect Density
	0 defects/KLOC

	Unit Test Defect Density
	6.25 defects/KLOC

	PQI
	.3

Example Quality Profile Data

3.1.1.3 Management Meetings

If the team is to be self-directed, then it must convey to management that it is managing itself. Periodically, TSP requires that the team brief management on its status, progress, and project risks. If additional resources are needed this is when they should be requested. Since the purpose of the meeting is to keep management comfortable, the format and its periodicity should be set and controlled by the management. The important issue is that if management realizes that the team is managing itself, then management will be less likely to interfere with the team.

3.1.2 TSP Technology Status

As of this writing (April 1999) the TSP is not publicly available. It is still under development by Watts Humphrey of the SEI. Public release is expected in fall 1999 with the publication of an introductory textbook. Until public release the SEI is the only source of TSP training and support.

The initial version of TSP was released in the summer of 1996. Some 28 teams have launched TSP projects, but only 10 have completed their projects. SEI’s TSP team sites the long project time associated with TSP projects as the primary reason that TSP is not yet publicly available. TSP has evolved through four revisions. These revisions have addressed issues uncovered during early TSP pilots including obtaining and maintaining executive support, management and supervisor training, TSP launch procedures, and TSP tool support.

3.1.3 Adopting TSP

Successful TSP adoption means that both the project was successful and TSP was used by the project team. Indifferent TSP adoption means that the project was successful, TSP was used on a portion of the project, but the project team had stopped using TSP by the end of the project. Unsuccessful TSP adoption means that the project failed, for whatever reasons. Of the ten completed TSP projects to date, four were successful, three were unsuccessful, and three were indifferent.

Of the three unsuccessful projects, two were due to complete organizational shakeups in which the ideals of long term improvement were sacrificed for immediate results, there were major engineering layoffs, and the TSP improvement effort lost its internal sponsorship. It can be implied that the projects themselves lost their sponsorship. These projects were doomed with or without TSP. The third failure occurred when the project manager imposed his plan on the team. In this case the self-directed team critical to TSP success was not allowed to gel.

The common themes in the three indifferent projects were that there was no management training, that management did not monitor team performance, and the team members stopped gathering and using TSP data. All these projects were early TSP efforts. All the teams were PSP and TSP trained. Positively, the projects did complete on time and did appear to have higher quality. Of concern is that the teams did not institutionalize the TSP process and will not be able to repeat their success on future projects. Also of concern is that the teams may have missed opportunities to improve project performance because they were not analyzing their project and process data.

Of the eighteen ongoing projects most appear to be headed for success. The few shaky projects have problems with part time project staffing, where the planned amount of engineering hours is not being delivered to the project, untrained management, and no TSP coaching support.

The TSP introduction strategy has changed dramatically since the first TSP projects in 1996, when TSP scripts were mailed to teams and no formal support was provided. Most of the adoption problems encountered by unsuccessful, indifferent, and shaky projects have been addressed by the current introduction strategy. The current strategy includes: PSP training for all project software engineers, management/supervisory training for direct management and team leadership, a senior management seminar as an adoption kickoff, and a launch workshop where the team is coached through the launch.

Does TSP really work?

Does TSP work? The first and only (as of April 1999) published results of TSP indicate that it does (Using the TSP on the TaskView Project, D. Webb and W. S., CrossTalk, February 1999, pp. 3-10). TaskView is a product that automates portions of the Air Force’s flight planning process. TaskView was recently rehosted with added functionality by a team of engineers at the Ogden Air Logistics Center, Hill Air Force Base, Utah. Almost 27,000 lines of new or changed code were produced in a project time of eight months. Quantitatively, the TaskView project completed one-month ahead of its original committed date with 55% added functionality without cost overruns (engineering effort was 2.5% under what had been planned). The PSP/TSP focus on quality produced a very high quality product, which resulted in a 20% schedule saving during CPT&E and system testing.

The product quality as measured in defects present at the beginning of CPT&E testing versus organizational averages improved by nearly 90%. The process quality as measured by early defect removal improved by 60%. Only one defect was delivered to acceptance test. This is a delivered defect density of 37 defects per million lines of code (MLOC). Note that the current state of the practice is a delivered defect density less than 5 defects per KLOC (5,000 per MLOC) and that less than 1 defect per KLOC is considered state of the art.

Qualitatively, the customer was very happy. The team received a follow-on tasking. In addition the team members all independently stated that they would continue to use TSP and that TSP helped them form a closer and more effective team.

Appendix A Acronyms
AF/R- Appraisal to Failure Ratio

CMM- Capability Maturity Model

CMU – Carnegie Mellon University

COQ- Cost of Quality

CPI – Cost Performance Index

DoD – Department of Defence

DRL- Defect Removal Leverage

ETVX – Entry Task Verification Exit

IDEF – Integrated Definition

KLOC – Thousand Lines of Code

KPA – Key Process Area

LOC – Lines of Code

LPI- Lower Prediction Interval

MLOC – Million Lines of Code

PIP – Process Improvement Proposal

PROBE – PROxy Based Estimating

PSP-Personal Software Process

SEI- Software Engineering Institute

SPI- Software Process Improvement

STSC- Software Technology Support Center

SW-CMM – Software Capability Maturity Model

TSP- Team Software Process

UPI- Upper Prediction Interval

Glossary
Activity-It is what the engineer is actually doing and is independent of phase. Example activities include design, code, compile, code review, and unit test. Compare to Phase.

Appraisal to Failure Ratio (AF/R)-This metric is used to measure the overall process quality. AF/R = Percent Appraisal COQ divided by Percent Failure COQ. If more time was spent in appraisal than failure, the ratio will be higher than 1.0. Generally, a larger ratio is better because it means more time is being spent preventing defects than fixing them.

Capability Maturity Model (CMM)- A way for organizations to assess their current capabilities of their processes and to establish a plan for improvement. It is currently the best description of the goals, methods and practices required for the practice of software engineering in industry.

Cost Performance Index (CPI)- This metric shows the degree to which cost commitments are being met. CPI = planned total development time to date divided by actual total development time to date. Ideally, the CPI should equal 1.0. A value less than 1.0 means that more time is actually being spent than planned. The CPI can be used during the planning phase to adjust the planned time either up or down.

Defect – A design or implementation element that, if not changed, would lead to a nonconforming product.

Defect Density – The ratio of defects to program size, for example, 100 defects per KLOC.

Defects Injected – This measure indicates how many defects were injected in each phase. Note that it is not always possible to know exactly in which phase a defect was injected. Engineering judgement is then used.

Defect Removal Rate-This metric measures the defect removal rate (defects removed per hour) of a phase. Higher numbers are desirable. It is most useful when comparing the defect removal rates between two phases.

Defect Removal Leverage (DRL)- This metric measures the relative defect removal efficiency between two phases. For example, a DRL (A/B) of 5.0 would mean that phase A is 5 times more effective at removing defects than phase B.

Defects Removed – This measure indicates how many defects were removed in each phase. Unlike defects injected, it is relatively simple to determine the phase in which a defect was removed.

Fix Defect – A defect injected while fixing another defect.

Fix Time – The time to find and fix a defect; extends from defect detection until the defect is corrected.

Inspection Rate-This metric shows the speed at which an inspection is done measured in LOC/hour.

Interruption Time – The time spent on non-project activities. Examples would be time taken by a phone call or a brief break.

Lines of Code (LOC)- Defined in a counting standard, but is usually one executable statement in a program.

Lines of Code per Hour (LOC/Hour)- The total new and changed LOC developed to date divided by the hours required to develop them. This metric is used to measure productivity. This metric is very personal and should not be used to compare the productivity between individuals.

Mean- The middle point in a series of numbers where half the numbers are higher and half the numbers are lower.

Measures – Provides a quantitative indication of the amount or size of a product or process. In PSP there are three measures; time, defect, and size.

Metric – Derived from measures and relates individual measures in some way. Metrics provide insight into the software process, project, or product.

Personal Software Process (PSP)- A methodology developed by Watts Humphrey and the Software Engineering Institute for giving individual software engineers the capability to manage their work at CMM Level 5. Together with the Team Software Process, this is the quickest, most effective way to make a team productive.

Process – A set of ordered steps to achieve a goal.

Process Improvement Proposal (PIP) – A mechanism for recording process improvement ideas.

Percent New Reused-This metric shows the percentage of the new and changed LOC planned to be added to the reuse library. Producing reusable code is considered to be more difficult and has a higher cost than regular code. Since code reuse is something that is generally considered good, the higher the number the better. It is most useful when compared with other metrics to see if code reuse is having any cost reduction effects.

Percent Reused- This metric shows the percentage of the total LOC taken from the reuse library. Code reuse is something that is generally desired because it is believed to reduce development costs. It is most useful when compared with other metrics to see if code reuse really does reduce costs.

Percent Appraisal COQ (Percent Appraisal Cost of Quality)- This metric shows the relative amount of time spent appraising the program (time spent in design and code reviews). It is generally good to have a higher number because it means more time is being spent preventing defects than fixing defects. This metric is accurate as long as the defect repair costs are relatively small in the reviews. It is most useful when compared to other metrics such as % Failure COQ and Total Defects/KLOC.

Percent Failure COQ (Percent Failure Cost of Quality)- This metric shows the relative amount of time spent finding and fixing defects in the program (time spent in compile and test). Lower values are better because it means less time is being spent diagnosing and fixing defects. This metric is accurate as long as the defect-free compile and test times are small compared to the defect-present times. It is most useful when compared to other metrics such as % Appraisal COQ and Total Defects/KLOC.

Phase – A defined step of a process. PSP defines ten software development phases that map to software development activities. These activities are planning, high level design, high level design review, design, design review, code, code review, compile, test, and postmortem. Phases differ from activities in that phases structured step by step world of process enactment and activities in the pragmatic world of software development. PSP tracks defects and time against phase not activity. In this way the cost of rework and of initial poor quality is exposed to the process practitioner.

Productivity - The amount of software produced divided by the amount of time used, measured as LOC/hour.

Program Size: Added LOC- A measure showing the LOC added to the program. When the base program size is zero, this number will be equal to the Total New and Changed LOC.

Program Size: Base LOC- A measure showing the LOC in the program base that was then modified to create the final program. For example, a new feature is being added to an existing program. The base size would be the LOC in the program before the new feature was added.

Program Size: Deleted LOC A measure showing the LOC deleted from the program base. For example, a new feature is being added to an existing program. While adding the new feature, a few lines of code were deleted from the original program to remove some stub routines. The lines of code deleted would be recorded by this metric.

Program Size: Modified LOC- A measure showing the LOC modified in the program base. For example, a new feature is being added to an existing program. While adding the new feature, a few lines of code were modified in the original program. The lines of code modified would be recorded by this measure.

Program Size: New and Changed LOC- A measure showing how many LOC have been added and modified including any New Reused lines of code.

Program Size: New Reused LOC- A measure showing the total LOC destined for the code reuse library. New reused code is generally of higher quality than regular code.

Program Size: Reused LOC- A measure showing the LOC reused from the reuse library.

Program Size: Total LOC- A measure showing the total lines of code for the entire program.

Quality Profile- A metric used to predict the quality of a software module.

Review Rate- The speed that code or design is reviewed, measured in LOC/hour.

Size- A PSP measure of the size of a program, measured in LOC.

Standard Deviation- A statistic used to measure how much a distribution is dispersed.

Team Software Process (TSP)- A methodology developed by Watts Humphrey and the Software Engineering Institute for giving teams of software engineers the capability to manage their work at CMM Level 5. Together with the Personal Software Process, this is the quickest, most effective way to make a team productive.

Test Defects/KLOC (Test Defects per Thousand Lines of Code)-This metric shows the quality of the program being put into test. For example, a high value indicates the program had a lot of defects before being tested. Since testing typically does not find many defects, this metric also represents the quality of the program coming out of test.

Time- One of the PSP measures, measured in minutes.

Time in Phase- Measures indicating how much time was spent in each phase of the PSP. The time in phase values do not include interruption time and other time overhead.

Total Defects/KLOC (Total Defects per Thousand Lines of Code)- This metric shows the total number of defects injected during the entire process. Since fixing defects is rather expensive, the lower the number the better. It is most useful to determine how a process change has affected the number of defects injected into programs.

Upper and Lower Prediction Intervals (UPI & LPI)- The upper and lower prediction interval metrics show the statistical size of the total time error. The prediction interval is not a forecast. For example, if a 70% prediction interval is calculated, then 70% of the time the actual total time will be in the interval. If the new process varies from the historical process then the predication interval does not apply. It is most useful as an indication of the quality of the time estimates because a large interval indicates the historical data is varying a large degree.

Yield – The percentage of defects removed by a process. Process yield is the percentage of defects injected before the first compile that are found before the first compile. A phase yield is the percentage of defects present at the beginning of the phase removed by that phase. Process yield is the standard PSP process quality metric.

Appendix B Annotated Bibliography

This listing includes synopsis of the most important PSP and TSP writings. It is current through April 1999.

Watts S. Humphrey, A Discipline for Software Engineering, Addison-Wesley, 1995.

This is THE PSP book. It is the text for the Personal Software Process (PSP) course. It describes PSP. It provides a framework for statistically managed software engineering and shows one how to use PSP. It shows one how to develop the skills and the habits needed to make accurate plans, to estimate the accuracy of those plans, and to track performance against those plans. It teaches defect management, design and code reviews, design templates, and process analysis. Some minor changes to the process are captured in to the 6th printing and subsequent versions (after November 1997). This information can be found on the bottom of the copyright page.

Watts S. Humphrey, Introduction to the Personal Software Process, Addison-Wesley, 1997.

This text is a simpler less theoretical description of PSP. It should be viewed as a companion text to A Discipline. It is a hands-on introduction to basic disciplines of software engineering. Designed as a workbook companion to any introductory programming or software-engineering text, it provides the practical means to integrate the PSP into college and university curricula. It provides help for software engineers at all levels of experience, from students to experienced professionals, helping them become far more effective by allowing them to manage their work habits and personal software management techniques. It provides advice and guidance and provides practical exercises for improving personal skills. It teaches the practitioner to manage their time effectively and to monitor the quality of their work.

Will Hayes, James W. Over, The Personal Software Process (PSP): An Empirical Study of the Impact of PSP on Individual Engineers, Technical Report CMU/SEI-97-TR-001, Software Engineering Institute, Carnegie Mellon University, December 1997.

This report documents the results of a study that examines the impact of the Personal Software Process (PSP) on the performance of 298 software engineers. The report describes the effect of PSP on key performance dimensions of these engineers. The report documents that quality (defects found in test) improved 2.5 times, effort estimating accuracy improved 1.75 times, size estimating accuracy improved by 2.5 times, and the bias towards overestimating disappeared. Productivity was unaffected. The report also discusses how improvements in personal capability also improve organizational performance in several areas: cost and schedule management, delivered product quality, and product cycle time.
Pat Ferguson, Watts S. Humphrey, Soheil Khajenoori, Susan Macke, Annette Matvya, “Results of Applying the Personal Software Process,” IEEE Computer, May 1997, pp. 24-31.

This is the first peer reviewed PSP experience paper. This article reports the experience of three industrial software groups, Advanced Information Services Inc., Motorola Paging Products Group, and Union Switch & Signal Inc., that have used PSP and have collected data to show its effectiveness. Application areas included commercial data processing, internal manufacturing support, communications product support, and real-time process control. All PSP projects in these organizations were delivered on or ahead of schedule and only one has had any customer-reported defects. The effective use of PSP depends on proper training, but with the training and continuing management interest, the authors conclude that PSP is an effective methodology for efficiently developing quality software.

Watts S. Humphrey, “Three Dimensions of Process Improvement Part I: Process Maturity,” CrossTalk Software Technology Support Center, Hill Air Force Base, UT, February 1998, pp. 14-17.

Watts S. Humphrey, “Three Dimensions of Process Improvement Part II: The Personal Process,” CrossTalk, Software Technology Support Center, Hill Air Force Base, UT, March 1998, pp. 13-15.
Watts S. Humphrey, “Three Dimensions of Process Improvement Part III: The Team Process,” CrossTalk, Software Technology Support Center, Hill Air Force Base, UT, April 1998, pp.14-17.
This three-part series describes SEI’s software process improvement initiative and the common themes of CMM, PSP, and TSP. Part I describes the CMM, part II the PSP, and part III the TSP. This series is notable because of its high level overview of all three technologies and how they can be combined to meet an organization’s needs.

David Webb, Watts S. Humphrey, “Using the TSP on the TaskView Project,” CrossTalk, Software Technology Support Center, Hill Air Force Base, UT, February 1999, pp. 3-10.

This paper reports the first results of using the Team Software Process (TSP) on a software-intensive system project. The TaskView team at Hill Air Force Base used the TSP to deliver the product a month ahead of its originally committed date for almost exactly the planned costs. Because the engineers’ productivity was 123% higher than on their prior project, they included substantially more function than originally committed. Testing was completed in one-eighth the normal time and, to date, the customer has reported no acceptance test defects.

Appendix C Books, Articles, and Papers

There has been and will continue to be much written about PSP and TSP. This section is an attempt to list the many books, articles, and papers describing PSP and TSP. It would be foolish to consider this list totally complete. We encourage additional input to correct any oversights.

Last updated in April 1999

[Demarco 96]

Tom Demarco, “Personal Approach to Improving Software Development,” IEEE Software, November 1996, pp. 116-123.

[Ferguson 97]

Pat Ferguson, Watts S. Humphrey, Soheil Khajenoori, Susan Macke, Annette Matvya, “Results of Applying the Personal Software Process,” IEEE Computer, May 1997, pp. 24-31.

[Hayes 97]
Will Hayes, James W. Over, The Personal Software Process (PSP): An Empirical Study of the Impact of PSP on Individual Engineers, Technical Report CMU/SEI-97-TR-001, Software Engineering Institute, Carnegie Mellon University, December 1997.

[Hilburn 97]

T, B. Hilburn, M. Towhidnejad, “Doing Quality Work: The Role of Software Process Definition in the Computer Science Curriculum,” Proceedings of the Twenty-eighth SIGCSE Symposium on Computer Science Education, San Jose, CA, February 27-March 1, 1997.

[Humphrey 94]

Watts S. Humphrey, “A Personal Commitment to Software Quality,” American Programmer, vol. 7, no. 12, December 1994, pp. 2-12.

[Humphrey 94]

Watts S. Humphrey, “The Personal Process in Software Engineering,” Proceedings of the Third International Conference on the Software Process, Reston, VA, October 10-11, 1994, pp. 69-77.

[Humphrey 94]

Watts S. Humphrey, “The Personal Software Process,” Software Process Newsletter, Committee on Software Process, Technical Council on Software Engineering, IEEE Computer Society, no. 1, September 1994, pp. 1-3.

[Humphrey 94]

Watts S. Humphrey, “Process Feedback and Learning,” Proceedings of the 9th International Software Process Workshop, October 5-7, 1994, Arlie, VA, IEEE Computer Society Press, 1994, pp. 104-106.

[Humphrey 95]

Watts S. Humphrey, A Discipline for Software Engineering, Addison-Wesley, 1995.

[Humphrey 95]

Watts S. Humphrey, “Introducing the Personal Software Process,” Annals of Software Engineering, vol. 1, 1995, pp. 311-325.

[Humphrey 95]

Watts S. Humphrey, “A Personal Commitment to Software Quality,” ESEC 1995, pp. 5-7.

[Humphrey 95]

Watts S. Humphrey, “The Personal Software Process,” International Perspectives in Software Engineering, vol. 1, no. 4, April 1995, pp. 3-9.

[Humphrey 95]

Watts S. Humphrey, “The Personal Software Process - Overview, Practice, and Results,” Software Process Improvement Forum, Research Access Inc., Pittsburgh, PA, Jan.-Feb. 1995, pp. 8-10.

[Humphrey 95]

Watts S. Humphrey, “The Personal Software Process and Personal Project Estimating,” American Programmer, vol. 9, no. 6, June 1996, pp. 2-15.

[Humphrey 95]

Watts S. Humphrey, “The Power of Personal Data,” Software Process Improvement and Practice, vol. 1, 69-81, 1995.

[Humphrey 95]

Watts S. Humphrey, “Pushing Process with a Personal Approach,” Interview with Watts Humphrey, IEEE Software, July 1995, pp. 102-103.

[Humphrey 95]

Watts S. Humphrey, “Why Should You Use a PSP?” Software Engineering Notes, ACM Press, Vol. 20, No. 3, July 1995, pp. 33-36

[Humphrey 95]

Watts S. Humphrey, “Making Process Improvement Personal,” IEEE Software (Manager Column), September 1995, pp. 82-83.

[Humphrey 96]

Watts S. Humphrey, “Making Software Manageable,” CrossTalk, Software Technology Support Center, Hill Air Force Base, UT, December 1996.

[Humphrey 96]

Watts S. Humphrey, “The PSP and Personal Project Estimating Personal Software Process - a new approach,” Newsletter of Centre for Software Engineering, Dublin City University, 1996.

[Humphrey 96]

Watts S. Humphrey, “Using a Defined and Measured Personal Software Process,” IEEE Software, May 1996, pp. 77-88.

[Humphrey 96]

Watts S. Humphrey, “The Changing World of Software,” Objectcurrents, SIGS Journal, January 1996.

[Humphrey 96]

Watts S. Humphrey, “Process or Bureaucracy,” Objectcurrents, SIGS Journal, February 1996.

[Humphrey 96]

Watts S. Humphrey, “Credibility and Commitment,” Objectcurrents, SIGS Journal, March 1996.

[Humphrey 96]

Watts S. Humphrey, “A Process or a Plan,” Objectcurrents, SIGS Journal, April 1996.

[Humphrey 96]

Watts S. Humphrey, “Checkpoint Restart,” Objectcurrents, SIGS Journal, May 1996.

[Humphrey 96]

Watts S. Humphrey, “Checkpoint Restart - Part II,” Objectcurrents, SIGS Journal, June 1996.

[Humphrey 96]

Watts S. Humphrey, “Estimating with Objects -Part I,” Objectcurrents, SIGS Journal, July 1996.

[Humphrey 96]

Watts S. Humphrey, “Estimating with Objects - Part II,” Objectcurrents, SIGS Journal, August 1996.

[Humphrey 96]

Watts S. Humphrey, “Estimating with Objects - Part III,” Objectcurrents, SIGS Journal, September 1996.

[Humphrey 96]

Watts S. Humphrey, “Estimating with Objects - Part IV,” Objectcurrents, SIGS Journal, October 1996.

[Humphrey 96]

Watts S. Humphrey, “Estimating with Objects - Part V,” Objectcurrents, SIGS Journal, November 1996.

[Humphrey 96]

Watts S. Humphrey, “Estimating with Objects - Part VI,” Objectcurrents, SIGS Journal, December 1996.

[Humphrey 97]
Watts S. Humphrey, Introduction to the Personal Software Process, Addison-Wesley, 1997.

[Humphrey 97]

Watts S. Humphrey, James W. Over, “The Personal Software Process (PSP): A Full-Day Tutorial,” ICSE 1997, pp. 645-646.

[Humphrey 98]

Watts S. Humphrey, “Three Dimensions of Process Improvement Part I: Process Maturity,” CrossTalk, Software Technology Support Center, Hill Air Force Base, UT, February 1998, pp. 14-17.

[Humphrey 98]

Watts S. Humphrey, “Three Dimensions of Process Improvement Part II: The Personal Process,” CrossTalk, Software Technology Support Center, Hill Air Force Base, UT, March 1998, pp. 13-15.

[Humphrey 98]

Watts S. Humphrey, “Three Dimensions of Process Improvement Part III: The Team Process,” CrossTalk, Software Technology Support Center, Hill Air Force Base, UT, April 1998, pp.14-17.
[Johnson 98]

Philip M. Johnson, Anne M. Disney, “The Personal Software Process: A Cautionary Case Study,” IEEE Software, Volume 15, Number 6, November 1998.

[Keuffel 97]
Warren Keuffel, “Coding Cowboys and Software Processes,” CrossTalk, Software Technology Support Center, Hill Air Force Base, UT, August 1997.

[Khajenoori 94]

S. Khajenoori, “Process-Oriented Software Education,” IEEE Software, November 1994, pp.99-101.

[Khajenoori 95]

S. Khajenoori, I. Hirmanpour: “An Experiential Report on the Implications of the Personal Software Process for Software Quality Improvement,” Proceedings of the 5th International Conference on Software Quality, October 1995, pp.303-312.

[Khajenoori 95]

S. Khajenoori, I. Hirmanphour, “Personal Software Process: An Experiential Report,” 8th SEI CSEE Conference Proceedings, 1995, pp. 131-145.

[Kness 97]

Steven Kness, Mark Satake, “A Level 5 Organization Looks at the Personal Software Process,” CrossTalk, Software Technology Support Center, Hill Air Force Base, UT, October 1997, pp. 26-28.

[Macke 96]

S. Macke, S. Khajnoori, I. Hirmanpour, “An Industry/Academic Partnership that Worked: An In-Progress Report,” Proceedings of 9th Conference on Software Engineering Education, Daytona Beach, FL, April 1996.

[Macke 96]

S. Macke, S. Khajenoori, J. New, I. Hirmanpour, J. Coxon, and R. Rockwell, “Personal Software Process at Motorola Paging products Group,” Proceedings of the Software Engineering Process Group Conference, 1996.

[Matvya 96]

A. Matvya, “Industrial Strength PSP at Union Switch & Signal,” Proceedings of the Software Engineering Process Group Conference, 1996.

[O’Beirne 97]

P. O’Beirne, J. Sanders, “Personal Software Process -Does the PSP Deliver its Promise?” Proceedings from INSPIRE’97, Gothenburg, Sweden, August 18-19, 1997.

[Pauwels 97]

Robert Pauwels, “The Personal Software Process: Installation and Implementation,” Proceedings of the Software Engineering Process Group Conference, San Jose CA, 1997.

[Ramsey 96]

M. Ramsey: “Experiences Teaching the Personal Software Process in Academia and Industry,” Proceedings of the Software Engineering Process Group Conference, 1996.

[Roy 94]

D. Roy, “The Personal Software process: Downscaling the Factory?” Proceedings of the 19th Annual Software Engineering Workshop, Goddard Space Flight, 1994.

[Roy 96]

D. Roy, “The Personal Software Process: An ‘Ego-Centered-Improvement Paradigm,” Proceedings of the Software Engineering Process Group Conference, 1996.

[Sherdil 94]

K. Sherdil: “Personal ‘Progress Functions’ in the Software Process,” Masters Thesis, School of Computer Science, McGill University, November 1994.

[Sherdil 96]

K. Sherdil, N. H. Madhavji, “Human-Oriented Improvement in the Software Process,” Proceedings of the 5th European Workshop on Software Process Technology, Nancy, France, October 1996.

[Shostak 96]

B. Shostak, “Adapting the Personal Software Process to Industry,” Software Process Newsletter, IEEE TCSE, No. 5, Winter 1996, pp. 10-12.

[Webb 99]

Dave Webb, Watts S. Humphrey, “Using the TSP on the TaskView Project,” CrossTalk, Software Technology Support Center, Hill Air Force Base, UT, February 1999, pp. TBD.

[Williams 97]

Laurie Williams, “Adjusting the Instruction of the Personal Software Process to Improve Student Participation,” Proceedings of Frontiers in Education 1997.

[Williams 98]

Laurie Williams, “Instilling a Defect Prevention Philosophy,” Proceedings of Frontiers in Education, 1998.

[Wohlin 97]

Claes Wohlin, “Why the PSP? Some academic experiences,” SPIN Conference, Collegium, Linköping, March 29, 1997.

[Yourdon 96]

E. Yourdon, Rise & Resurrection of the American Programmer, Prentice Hall, Chapter 5, Personal Software Practices, 1996.

Appendix D WWW Links

There are many sources of information about PSP and TSP on the Internet. This section is a list of some links semi-ordered in level of content and usefulness. These links point to PSP and TSP articles, tools, and references.

There is no possible way that this list could be all-inclusive, but it is a good starting point when searching for information about PSP. If we have omitted any links that should be on this list we would appreciate it if it were brought to our attention so we can add them to this list.
 This list was last updated in April 1999.

www.sei.cmu.edu/psp/psp.html SEI’s PSP home page with links to all their PSP information.

seir.sei.cmu.edu/seir/seir-home.html SEI’s Software Engineering Information Repository containing PSP and Software Engineering Information.

www.stsc.hill.af.mil/ STSC’s home page with links to PSP and other Software Engineering information.

www-cs.etsu-tn.edu/softeng/psp/index.htm East Tennesse State University's Personal Software Process Studio Home page which discusses a PSP case tool they are introducing.

wwwipd.ira.uka.de/PSP/ The University of Karlsruhe’s PSP resource page containing pointers to resources for supporting PSP.

www.iscn.ie/news/sp96/k.emam_2.html An article titled “Implementing Concepts from the Personal Software Process in an Industrial Setting”.

www.dsv.su.se/~terttu/volvo.html An article discussing PSP implementation in Sweden.

www2.umassd.edu/SWPI/PersonalSoftwareProcess/PSP.html#refs A web site describing PSP with links to other PSP sites.

members.wbs.net/homepages/d/a/v/davidfrico.html David F. Rico's SPI Web Page with information and links dealing with SPI and PSP.

www.computer.org/software/so1996/s3toc.htm An article by Watts Humphrey titled “Using A Defined and Measured Personal Software Process”.

www.softdim.com/psqt/psqt98/keynote_speakers.htm An abstract for a talk Watts Humphrey gave on TSP.

www.cs.ttu.edu/fase/v8n02.txt The Forum for Advancing Software Engineering Education’s newsletter whose topic was PSP.

www.enel.ucalgary.ca/~goss/693/03.html A summary of a paper titled “The Personal Software Process” presented at the Frontiers In Education (FIE) Conference in November 1997

www.dcs.ed.ac.uk/home/ky/special.html A web page with links to PSP and other Software Engineering information.

www.cm.deakin.edu.au/~peter/PSP_data/Contributor_index.html Links to PSP information including the PSP mailing list.

www.utexas.edu/coe/sqi/psp/psp.html The University of Texas’ web page discussing their PSP training offering.

www.aedc.com.au/PSP1.htm AEDC’s web page discussing the Introduction to PSP class.

www.aedc.com.au/PSP2.htm AEDC’s web page discussing the Advanced PSP class.

www.csse.swin.edu.au/ross/psp.html A list of links to lecture notes from a PSP course given at Swinburne University of Technology.

Appendix E PSP Venders and Tools

Watts Humphrey of the SEI developed PSP and one of SEI’s objectives is to provide transition of new software engineering technology into practice. Anyone can teach the PSP material by just buying the book, A Discipline for Software Engineering, and teaching from the text. In fact many colleges and universities around the world have done and are doing just that.

SEI has been supporting an active PSP instructor community since 1995. Their support includes lecture materials and student tools. Courseware upgrades have been made and new courses created. This section includes the SEI’s licensed vendors as of April 1999. SEI maintains an up to date list at http://www.sei.cmu.edu/collaborating/partners/trans.part.psp.html.

U.S. Government Use License

Hill AFB, UT

Leslie W. Dupaix

Software Technology Support Center

U.S. Air Force

00-ALC/TISE

7278 4th Street

Hill AFB, UT 84056-5205

Phone: (801)-775-2064

FAX: (801)-777-8069

E-mail:dupaixl@software.hill.af.mil
Internet: http://www.stsc.hill.af.mil/

Defense Logistics Agency

Richard Sierzant

DCMC Denver/GDTA

Defense Logistics Agency

5975 Greenwood Plaza Blvd.

Englewood, CO 80111-4715

Phone: (303)-581-4593

FAX: (303)-581-4656

E-mail:rsierzant@nwest.dcmdw.dla.mil
Internet: http://www.dcmc.dcrb.dla.mil/

Naval Air Warfare Center

Jeffrey H. Schwalb

Naval Air Warfare Center Weapons Division

Tomahawk Program Office

Code 47HG00D

China Lake, CA 93555-6001

Phone: (760)-939-6226

FAX: (760)-939-1186

E-mail:schwalbj@navair.navy.mil

Internet: http://www.nawcwpns.navy.mil
Unlimited Use License

Advanced Information Services Inc.

Patricia H. Ferguson, President

1605 Candletree Drive

Suite 114

Peoria, IL 61614

Phone: (309)-691-5175, Ext. 210

FAX: (309)-691-5440

E-mail: patf@advinfo.net
Internet: http://www.advinfo.net/aweb/aboutais.nsf/

Davis Systems

Noopur Davis, Principal

238 Northwood Drive

Harvest, AL 35749-9795

Phone: (256)-837-0058

FAX: (256)-895-9178

E-mail: NDavis@DavisSys.com

Internet:http://www.DavisSys.com/psp.htm

Embedded Software Professionals

Peter Abowd

Embedded Software Professionals

35526 Grand River

Suite 154

Farmington Hills, MI 48335-3120

Phone: (248)-737-1540

E-mail: esp@mindspring.com

Howard Community College

Patricia Keeton

10650 Hickory Ridge Road

Columbia, MD 21044

Phone: (410)-772-4979

E-mail: pkeeton@howardcc.edu
PRT Group, Inc.

Jeff Perdue

ISPI, Inc. - a PRT Group, Inc. Company

15 North Collinwood Drive

Pittsburgh, PA 15215

Phone: (412)-781-1701

FAX: (412)-781-0805

E-mail: jperdue@prt.com

Internet: http://www.ibp.com/pit/ispi/index.html

Software Quality Institute

Joanne Click

University of Texas at Austin

PRC/MER MC R9800

Austin, TX 78712-1080

Phone: (512)-471-4875

FAX: (512)-471-4824

E-mail:click@itp.sqi.utexas.edu

Internet: http://www.utexas.edu/coe/sqi/psp/psp.html

Software Technology, Process & People

Daniel Roy, Owner

20 Forest Road

Bradford Woods, PA 15015

Phone: (724)-934-0943

FAX: (724)-934-3805

E-mail:danroy@nauticom.net or danroy@stpp.com

State of South Carolina Only Use License

South Carolina Research Authority

Dr. Larry E. Druffel

President and CEO

1330 Lady Street, Suite 503

Columbia, SC 29201

P.O. Box 12025

Columbia, SC 29211-2025

Phone: (803)-799-4070

FAX: (803)-252-7642

E-mail:druffel@scra.org
Internet: http://www.scra.org

Tools

Last updated April 1999.

Currently we are unaware of any commercially available tools supporting PSP and TSP. There are, however, numerous venders working on tool development and some shareware is available from the Internet.

Appendix F STSC PSP Services

In keeping with the STSC’s mission of aiding organizations in adopting useful software engineering technologies, the goal of the STSC’s PSP service is the organizational adoption and practice of PSP - not just individual PSP practice. Our goal is to be THE organization specializing in solving DoD specific barriers to PSP adoption and in successfully inserting PSP into the DoD software culture. The STSC’s PSP instructors are certified by the SEI to deliver the SEI’s PSP material. They have strong interests and extensive experience in the application of software engineering principles to the development of software systems. They also possess broad technology adoption experiences. The STSC has identified five necessary activities that lead to the organizational adoption of PSP. The STSC offers three courses that address these activities as well as the ability to provide consulting support in all five areas.

Obtaining and Maintaining Commitment

Obtaining and maintaining commitment from upper management is absolutely necessary for all adoption efforts, whether PSP or not. Without commitment the adoption will not succeed. In addition to providing consulting in this area, the STSC offers the PSP Executive Seminar to help in obtaining management commitment. The executive seminar has been proven very effective at building top level commitment to the PSP. It is an excellent kickoff activity for a PSP pilot project or as a low cost mechanism for building executive understanding.

PSP Training

The PSP addresses an individual developer’s ability to consistently deliver high quality software products in a timely manner. It has been demonstrated that projects staffed with PSP trained engineers produce extremely low defect density software on schedule. An analysis of a large group (298 students) who have completed PSP training revealed that on average during PSP training, quality (defects found in test) improved 2.5 times, effort estimating accuracy improved 1.75 times, size estimating accuracy improved by 2.5 times, and the bias towards overestimating disappeared. Productivity was unaffected. The STSC offers PSP training in the form of The Disciplined Software Engineering course to train engineers in the application of PSP. As part of our service the STSC works with the management of the engineers undergoing PSP training to insure that the students complete the training. The STSC understands the federal work culture and federal work rules and has worked hard to modify the course format so as to eliminate the need for student overtime. Students will require on average 130 hours to complete the course. A number of formats (class meeting times) are available. We are very flexible in meeting client requirements.

Managing PSP Engineers

The organization’s (and individual manager’s) management practices need to evolve to support the PSP engineer’s goal of continual personal improvement and to enable the organization to make use of the engineer’s improved skills. In addition to providing consulting in this area, the STSC offers the Managing PSP-Trained Engineers Course to help organizations develop procedures and skills for managing the PSP-trained engineers. This course is for managers who directly manage software development including project managers, team leaders, and supervisors. This course covers the PSP and its use in managing teams of PSP trained software engineers. This course will provide managers the knowledge and skills to manage and work with PSP trained groups. It also shows managers how to define meaningful software product and process goals, to review and track these goals, and how to act as a coach to help teams meet these goals.

Adopting “Textbook” PSP to the Organization

The organization will need to modify the PSP infrastructure and tailor the PSP processes used and developed during the PSP training to its unique development environment. This is important if PSP is to succeed and be accepted in an organization. The STSC can provide consulting services to help organizations tailor the PSP processes to their unique development environment.

Piloting PSP on a Project

Piloting PSP on a project enables a measurement of the success of the PSP effort, while also supporting rollout of PSP to the remainder of the organization. This is a critical step in maintaining the organization’s commitment to PSP and quality improvement. The STSC can provide consulting services to help organizations in the piloting of PSP on a project.

� American Heritage Dictionary, Second College Edition, Houghton Mifflin, 1982.

� This is where organizations differ from teams. Organizations primary input to the success of software projects is that they enable teams to succeed. Teams must still deliver the goods. Importantly, organizations provide infrastructure to teams. Also the contractual relationship between the customer of the software is with the organization and not the team.

� To improve any innate abilities requires personal discipline; the discipline to create and follow an improvement plan.

� Other meanings of hacking include breaking into computer systems and elaborate jokes. We limit ourselves to the meaning of hacking that implies ad-hoc development of software.

� Harlan Mills’ chief programmer concept is one notable exception. In this concept a chief programmer who is supported by various assistants has sole responsibility for the technical output of the team. This idea, first proposed in the early 1970’s, has never caught on.

� Fredrick Brooks, The Mythical Man Month: Essays on Software Engineering, Addison-Wesley, 1995, pp 277-279. Pope Pias XI proposed this principle in the 1920s and 1930s. In 1973, E.F. Schumacher extended it to business organizations.

� As defined by the PSP.

� However, it is fairly easy to tailor PSP to support these and other personal work activities.

� �HYPERLINK "http://cseng.aw.com/bookdetail.qry?ISBN=0-201-54610-8&ptype=0"��A Discipline for Software Engineering�, pp 443

� Actually, the design through test phases can repeat themselves as a cycle. However, the number of cycles and the technical goals of each cycle must be explicitly pre-planned before the first design phase.

� Since the implementation technology (i.e., development language) is known and the estimator can be assumed to be an expert at using that technology it is reasonable to use LOC. LOC has the further advantage in that it can be directly measured after development has been completed. (The most often mentioned alternative measure, function or feature points, does not have this capability.) Measurement of actuals facilitates a feedback loop that in theory enables the estimator to improve estimation accuracy.

� In PSP lingo the productivity database is usually called the PROBE database.

� Two estimates are recorded: estimated number of new and changed LOC and estimated number of object LOC. In PSP1 and above object LOC is directly estimated, and estimated new and changed LOC is derived from the object LOC estimate.

� However, PSP data does seem to indicate that the act of recording all defects does have a deterrent effect.

� Independent inspections should still occur. It is relatively easy to tailor the standard PSP to include them.

� They also remove defects, but at a much lower rate.

� Dave Webb and Dan Naselius discussed this in their 1997 STC presentation. The argument boils down to the issue that if a disciplined review is to be conducted then it will take as long before as it will after the compile. If the review is not disciplined then the times may differ significantly. Algebraically, we note that Rt (the disciplined review time that is not spent finding and fixing defects) and Ct (the compile time that is not spent finding and fixing defects) should be the same. For defects found in Compile (the preponderance of defects in the Compile-Review scenario the find time is usually approaching zero, but potentially unbounded. For defects found in Review (the preponderance of defects in the Review-Compile scenario) the find time is zero. The fix time for found defects is assumed to be identical in both scenarios.

� If sufficient usable data exists, PSP uses linear regression, otherwise it uses past productivity rates.

� In this graphic the historical estimation bias and historical productivity represent the primary outputs of the PROBE database.

� Of academic interest, PROBE is the only original technology in PSP. All the rest of the PSP technologies (design and code reviews, design techniques, process definition and evolution) are well known and represent the best of software engineering knowledge. We believe that the significant value and other original contribuition of PSP is how all these good ideas are combined in a usable fashion.

� Engineering judgement and guesswork are very similar. Both imply a non-repeatable process. They differ in that successful guesswork relies on luck or non-trainable skills, while engineering judgement is an acquired skill. The usual technique used to acquire engineering judgement is years of guesswork, even further blurring the distinction.

� Actually, it’s a little more complicated than just relative size. As described in the textbook, the estimator determines the number of methods in the software object and the relative size of those methods. This is directly applicable to object oriented (OO) development but requires tailoring if the estimator is not fluent in OO.

� The prediction interval is the range around an estimate within which the actual result will fall.

� The level 2 KPAs of Software Configuration Management, Software Quality Assurance, Software Sub-contract Management, and Requirements Management are not addressed by the PSP. The level 3 KPAs of Intergroup coordination and Training Program are not addressed by the PSP. All level 4 and 5 KPAs are addressed by the PSP.

� Planning and tracking capabilities are introduced in PSP1.

� While even PSP0 represents an integrated set of defined processes, it is not until PSP2 that the idea of code and design reviews is introduced.

� The level of process measurement detail implied by quantitative process management is not introduced until PSP2. The concepts of software quality management are also not introduced until PSP2. Both are refined in PSP2.1.

� Quantitative process management implies that individuals work processes are not changed unless first characterized quantitatively and then the effect of the change is evaluated quantitatively. The PIP, introduced in PSP0.1, institutionalizes this ideal. Defect (defects found after PSP test) prevention is addressed by PSP’s early defect removal strategy introduced in PSP2.

� The Personal Software Process (PSP): An Empirical Study of the Impact of PSP on Individual Engineers, CMU/SEI-97-TR-001, Will Hayes and Jim Over, December 1997.

� There are many team-building technologies, mostly in workshop form. Unfortunately these are general purpose and do not specifically address software development issues.

� Actually, it is only required for the team members that will be developing software. IPT teams in which some team members are not software engineers have used TSP. For TSP to be useful, the bulk of the project should be software related and the software should be the critical path item for the project.

� Humphrey, Watts S., “Three Dimensions of Process Improvement, Part III: The Team Process.” CrossTalk. April 1998.

� Humphrey, Watts S., “Three Dimensions of Process Improvement, Part III: The Team Process.” CrossTalk. April 1998.

� Project hours differ from work hours. Project hours include only the time spent directly performing tasks identified in the project’s detailed project plan. Examples of work hours that are not project hours include time spent in meetings, performing role responsibilities, performing outside duties, on e-mail, in answering other team members questions, and during breaks.

� The data discussed in this section was presented at “The Team Software Process (TSP) Tutorial, given at the 1999 SEPG Symposium, by Watts Humphrey, Jim Over, and Dan Burton.

� Our email addresses are � HYPERLINK mailto:friedric@software.hill.af.mil ��friedric@software.hill.af.mil� and � HYPERLINK mailto:vanburej@software.hill.af.mil ��vanburej@software.hill.af.mil�.

� Our email addresses are � HYPERLINK mailto:friedric@software.hill.af.mil ��friedric@software.hill.af.mil� and � HYPERLINK mailto:vanburej@software.hill.af.mil ��vanburej@software.hill.af.mil�.

PAGE
2

_985607478.xls
Chart1

		Design/Code Time

		Code Review Time

		Compile Defect Density

		Unit Test Defect Density

		Design Review Time

1

0.8378378378

1

0.8888888889

0.4022346369

QUALITY

		Quality Profiles

		Quality Profile - development portion

		Quality Profile - compile/test portion

		Yield - The yield chart needs to be updated before opening this spreadsheet

		Total actual design time in minutes

		Student #:		Stu1		Stu2		Stu3		Stu4		Stu5		Stu6		Stu7		Stu8		Stu9		Stu10		Stu11		Stu12		Stu13		Stu14		Stu15		Stu16		Stu17		Stu18		Stu19		Stu20

		Program #		ActMin		ActMin		ActMin		ActMin		ActMin		ActMin		ActMin		ActMin		ActMin		ActMin		ActMin		ActMin		ActMin		ActMin		ActMin		ActMin		ActMin		ActMin		ActMin		ActMin

		Formulas		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		1		11		10		18		31		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		2		35		20		31		12		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		3		32		72		71		145		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		4		22		54		21		87		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		5		32		95		63		166		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		6		26		117		113		357		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		7		14		47		55		110		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		8		13		74		178		189		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		9		32		179		0		296		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		10		69		158		0		57		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		Totals		286		826		550		1450		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		Total actual design review time in minutes

		Student #:		Stu1		Stu2		Stu3		Stu4		Stu5		Stu6		Stu7		Stu8		Stu9		Stu10		Stu11		Stu12		Stu13		Stu14		Stu15		Stu16		Stu17		Stu18		Stu19		Stu20

		Program #		ActMin		ActMin		ActMin		ActMin		ActMin		ActMin		ActMin		ActMin		ActMin		ActMin		ActMin		ActMin		ActMin		ActMin		ActMin		ActMin		ActMin		ActMin		ActMin		ActMin

		Formulas		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		1		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		2		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		3		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		4		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		5		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		6		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		7		18		20		34		30		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		8		15		23		8		33		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		9		23		36		0		55		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		10		52		54		0		195		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		Totals		108		133		42		313		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		Design Review Time Quality Profile																																																										Design Review Quality Profile minimum calculation (if no value then set to max)

		Student #:		Stu1		Stu2		Stu3		Stu4		Stu5		Stu6		Stu7		Stu8		Stu9		Stu10		Stu11		Stu12		Stu13		Stu14		Stu15		Stu16		Stu17		Stu18		Stu19		Stu20				Average		Max		Min				Level Average						Student #:		Stu1		Stu2		Stu3		Stu4		Stu5		Stu6		Stu7		Stu8		Stu9		Stu10		Stu11		Stu12		Stu13		Stu14		Stu15		Stu16		Stu17		Stu18		Stu19		Stu20

		Program #																																																										Program #

		1		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0				0		0		0				0						1		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		2		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0				0		0		0				0						2		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		3		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0				0		0		0				0						3		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		4		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0				0		0		0				0						4		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		5		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0				0		0		0				0						5		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		6		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0				0		0		0				0						6		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		7		1		0.8510638298		1		0.5454545455		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0				0.8491295938		1		0.5454545455				0.7081881821						7		1		0.8510638298		1		0.5454545455		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1

		8		1		0.6216216216		0.0898876404		0.3492063492		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0				0.5151789028		1		0.0898876404				0.7081881821						8		1		0.6216216216		0.0898876404		0.3492063492		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1

		9		1		0.4022346369		0		0.3716216216		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0				0.5912854195		1		0.3716216216				0.7081881821						9		1		0.4022346369		1		0.3716216216		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1

		10		1		0.6835443038		0		1		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0				0.8945147679		1		0.6835443038				0.7081881821						10		1		0.6835443038		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1

		Totals																																																										Totals

		Total actual code time in minutes

		Student #:		Stu1		Stu2		Stu3		Stu4		Stu5		Stu6		Stu7		Stu8		Stu9		Stu10		Stu11		Stu12		Stu13		Stu14		Stu15		Stu16		Stu17		Stu18		Stu19		Stu20

		Program #		ActMin		ActMin		ActMin		ActMin		ActMin		ActMin		ActMin		ActMin		ActMin		ActMin		ActMin		ActMin		ActMin		ActMin		ActMin		ActMin		ActMin		ActMin		ActMin		ActMin

		Formulas		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		1		29		107		101		217		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		2		15		93		56		215		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		3		23		110		331		196		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		4		17		83		67		154		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		5		28		78		51		124		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		6		30		258		181		169		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		7		21		42		41		60		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		8		13		59		151		124		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		9		63		74		0		129		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		10		50		84		0		180		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		Totals		289		988		979		1568		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		Total actual code review time in minutes

		Student #:		Stu1		Stu2		Stu3		Stu4		Stu5		Stu6		Stu7		Stu8		Stu9		Stu10		Stu11		Stu12		Stu13		Stu14		Stu15		Stu16		Stu17		Stu18		Stu19		Stu20

		Program #		ActMin		ActMin		ActMin		ActMin		ActMin		ActMin		ActMin		ActMin		ActMin		ActMin		ActMin		ActMin		ActMin		ActMin		ActMin		ActMin		ActMin		ActMin		ActMin		ActMin

		Formulas		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		1		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		2		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		3		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		4		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		5		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		6		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		7		20		20		83		52		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		8		21		21		83		39		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		9		55		31		0		104		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		10		54		49		0		81		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		Totals		150		121		166		276		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		Code Review Quality Profile																																																										Code Review Quality Profile minimum calculation (if no value then set to max)

		Student #:		Stu1		Stu2		Stu3		Stu4		Stu5		Stu6		Stu7		Stu8		Stu9		Stu10		Stu11		Stu12		Stu13		Stu14		Stu15		Stu16		Stu17		Stu18		Stu19		Stu20				Average		Max		Min				Level Average						Student #:		Stu1		Stu2		Stu3		Stu4		Stu5		Stu6		Stu7		Stu8		Stu9		Stu10		Stu11		Stu12		Stu13		Stu14		Stu15		Stu16		Stu17		Stu18		Stu19		Stu20

		Program #																																																										Program #

		1		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0				0		0		0				0						1		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		2		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0				0		0		0				0						2		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		3		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0				0		0		0				0						3		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		4		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0				0		0		0				0						4		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		5		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0				0		0		0				0						5		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		6		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0				0		0		0				0						6		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		7		1		0.9523809524		1		1		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0				0.9880952381		1		0.9523809524				0.9307939611						7		1		0.9523809524		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1

		8		1		0.7118644068		1		0.6290322581		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0				0.8352241662		1		0.6290322581				0.9307939611						8		1		0.7118644068		1		0.6290322581		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1

		9		1		0.8378378378		0		1		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0				0.9459459459		1		0.8378378378				0.9307939611						9		1		0.8378378378		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1

		10		1		1		0		0.9		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0				0.9666666667		1		0.9				0.9307939611						10		1		1		1		0.9		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1

		Totals																																																										Totals

		Design to Code Time Quality Profile																																																										Design to Code Time Quality Profile minimum calculation (if no value then set to max)

		Student #:		Stu1		Stu2		Stu3		Stu4		Stu5		Stu6		Stu7		Stu8		Stu9		Stu10		Stu11		Stu12		Stu13		Stu14		Stu15		Stu16		Stu17		Stu18		Stu19		Stu20				Average		Max		Min				Level Average						Student #:		Stu1		Stu2		Stu3		Stu4		Stu5		Stu6		Stu7		Stu8		Stu9		Stu10		Stu11		Stu12		Stu13		Stu14		Stu15		Stu16		Stu17		Stu18		Stu19		Stu20

		Program #																																																										Program #

		1		0.3793103448		0.0934579439		0.1782178218		0.1428571429		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0				0.1984608133		0.3793103448		0.0934579439				0.4355937735						1		0.3793103448		0.0934579439		0.1782178218		0.1428571429		0.3793103448		0.3793103448		0.3793103448		0.3793103448		0.3793103448		0.3793103448		0.3793103448		0.3793103448		0.3793103448		0.3793103448		0.3793103448		0.3793103448		0.3793103448		0.3793103448		0.3793103448		0.3793103448

		2		1		0.2150537634		0.5535714286		0.0558139535		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0				0.4561097864		1		0.0558139535				0.4355937735						2		1		0.2150537634		0.5535714286		0.0558139535		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1

		3		1		0.6545454545		0.2145015106		0.7397959184		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0				0.6522107209		1		0.2145015106				0.4355937735						3		1		0.6545454545		0.2145015106		0.7397959184		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1

		4		1		0.6506024096		0.3134328358		0.5649350649		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0				0.6322425776		1		0.3134328358				0.7894528951						4		1		0.6506024096		0.3134328358		0.5649350649		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1

		5		1		1		1		1		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0				1		1		1				0.7894528951						5		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1

		6		0.8666666667		0.4534883721		0.6243093923		1		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0				0.7361161078		1		0.4534883721				0.7894528951						6		0.8666666667		0.4534883721		0.6243093923		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1

		7		0.6666666667		1		1		1		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0				0.9166666667		1		0.6666666667				0.8922335601						7		0.6666666667		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1

		8		1		1		1		1		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0				1		1		1				0.8922335601						8		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1

		9		0.5079365079		1		0		1		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0				0.835978836		1		0.5079365079				0.8922335601						9		0.5079365079		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1

		10		1		1		0		0.3166666667		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0				0.7722222222		1		0.3166666667				0.8922335601						10		1		1		1		0.3166666667		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1

		Totals																																																										Totals

		Review QP

		Student #:		Stu1		Stu2		Stu3		Stu4		Stu5		Stu6		Stu7		Stu8		Stu9		Stu10		Stu11		Stu12		Stu13		Stu14		Stu15		Stu16		Stu17		Stu18		Stu19		Stu20

		Program #

		1		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		2		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		3		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		4		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		5		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		6		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		7		1		0.8105369807		1		0.5454545455		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		8		1		0.4425103069		0.0898876404		0.2196620584		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		9		1		0.3370073985		0		0.3716216216		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		10		1		0.6835443038		0		0.9		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		Totals

		Development QP

		Student #:		Stu1		Stu2		Stu3		Stu4		Stu5		Stu6		Stu7		Stu8		Stu9		Stu10		Stu11		Stu12		Stu13		Stu14		Stu15		Stu16		Stu17		Stu18		Stu19		Stu20

		Program #

		1		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		2		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		3		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		4		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		5		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		6		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		7		0.6666666667		0.8105369807		1		0.5454545455		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		8		1		0.4425103069		0.0898876404		0.2196620584		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		9		0.5079365079		0.3370073985		0		0.3716216216		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		10		1		0.6835443038		0		0.285		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		Totals

		Actual Size

		Student #:		Stu1		Stu2		Stu3		Stu4		Stu5		Stu6		Stu7		Stu8		Stu9		Stu10		Stu11		Stu12		Stu13		Stu14		Stu15		Stu16		Stu17		Stu18		Stu19		Stu20

		Program #		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		1		71		58		124		86		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		2		29		82		101		69		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		3		112		81		653		95		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		4		78		117		76		103		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		5		67		65		58		73		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		6		135		185		165		188		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		7		58		87		99		98		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		8		71		194		127		128		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		9		122		160		0		215		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		10		313		279		0		251		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		Totals		1056		1308		1403		1306		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		Compile Defects

		Student #:		Stu1		Stu2		Stu3		Stu4		Stu5		Stu6		Stu7		Stu8		Stu9		Stu10		Stu11		Stu12		Stu13		Stu14		Stu15		Stu16		Stu17		Stu18		Stu19		Stu20

		Program #		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		1		5		33		17		28		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		2		5		11		2		7		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		3		2		4		19		16		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		4		1		5		5		12		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		5		4		3		5		2		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		6		3		7		3		2		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		7		0		1		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		8		0		2		3		1		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		9		2		0		0		3		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		10		2		0		0		4		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		Totals		24		66		54		75		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		Compile QP

		Student #:		Stu1		Stu2		Stu3		Stu4		Stu5		Stu6		Stu7		Stu8		Stu9		Stu10		Stu11		Stu12		Stu13		Stu14		Stu15		Stu16		Stu17		Stu18		Stu19		Stu20

		Program #

		1		0.2486865149		0.0345443716		0.1359649123		0.0595980596		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		2		0.1096408318		0.1387478849		0.6710963455		0.1794538362		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		3		0.7179487179		0.3367983368		0.5115550333		0.1120943953		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		4		0.8764044944		0.3792544571		0.2638888889		0.1580966999		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		5		0.2869379015		0.3561643836		0.2078853047		0.5347985348		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		6		0.6206896552		0.418079096		0.7096774194		0.9690721649		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		7		1		0.9304812834		1		1		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		8		1		0.9847715736		0.5948477752		1		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		9		0.7577639752		1		0		0.8349514563		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		10		1		1		0		0.7711213518		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		Totals

		Test Defects

		Student #:		Stu1		Stu2		Stu3		Stu4		Stu5		Stu6		Stu7		Stu8		Stu9		Stu10		Stu11		Stu12		Stu13		Stu14		Stu15		Stu16		Stu17		Stu18		Stu19		Stu20

		Program #		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		1		3		2		6		14		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		2		2		7		1		8		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		3		3		6		7		13		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		4		3		0		1		8		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		5		4		2		4		1		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		6		4		4		2		2		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		7		1		1		1		7		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		8		0		1		0		4		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		9		1		1		0		2		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		10		2		0		0		2		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		Totals		23		24		22		61		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		Test QP																																												Max		Min		Avg				Level Average						Minimum QP Calculation (if no values set to Max)

		Student #:		Stu1		Stu2		Stu3		Stu4		Stu5		Stu6		Stu7		Stu8		Stu9		Stu10		Stu11		Stu12		Stu13		Stu14		Stu15		Stu16		Stu17		Stu18		Stu19		Stu20																		Student #:		Stu1		Stu2		Stu3		Stu4		Stu5		Stu6		Stu7		Stu8		Stu9		Stu10		Stu11		Stu12		Stu13		Stu14		Stu15		Stu16		Stu17		Stu18		Stu19		Stu20

		Program #																																																										Program #		Number		Number		Number		Number		Number		Number		Number		Number		Number		Number		Number		Number		Number		Number		Number		Number		Number		Number		Number		Number

		1		0.2116244411		0.2532751092		0.1873111782		0.0595980596		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0				0.2532751092		0.0595980596		0.177952197				0.2382635317						1		0.2116244411		0.2532751092		0.1873111782		0.0595980596		0.2532751092		0.2532751092		0.2532751092		0.2532751092		0.2532751092		0.2532751092		0.2532751092		0.2532751092		0.2532751092		0.2532751092		0.2532751092		0.2532751092		0.2532751092		0.2532751092		0.2532751092		0.2532751092

		2		0.1351981352		0.1106612686		0.6710963455		0.0826842421		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0				0.6710963455		0.0826842421		0.2499099978				0.2382635317						2		0.1351981352		0.1106612686		0.6710963455		0.0826842421		0.6710963455		0.6710963455		0.6710963455		0.6710963455		0.6710963455		0.6710963455		0.6710963455		0.6710963455		0.6710963455		0.6710963455		0.6710963455		0.6710963455		0.6710963455		0.6710963455		0.6710963455		0.6710963455

		3		0.3146067416		0.1264637002		0.6361422309		0.0705009276		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0				0.6361422309		0.0705009276		0.2869284001				0.2382635317						3		0.3146067416		0.1264637002		0.6361422309		0.0705009276		0.6361422309		0.6361422309		0.6361422309		0.6361422309		0.6361422309		0.6361422309		0.6361422309		0.6361422309		0.6361422309		0.6361422309		0.6361422309		0.6361422309		0.6361422309		0.6361422309		0.6361422309		0.6361422309

		4		0.2300884956		1		0.5507246377		0.1209630065		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0				1		0.1209630065		0.4754440349				0.4078191494						4		0.2300884956		1		0.5507246377		0.1209630065		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1

		5		0.15455594		0.2795698925		0.1351981352		0.5347985348		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0				0.5347985348		0.1351981352		0.2760306256				0.4078191494						5		0.15455594		0.2795698925		0.1351981352		0.5347985348		0.5347985348		0.5347985348		0.5347985348		0.5347985348		0.5347985348		0.5347985348		0.5347985348		0.5347985348		0.5347985348		0.5347985348		0.5347985348		0.5347985348		0.5347985348		0.5347985348		0.5347985348		0.5347985348

		6		0.2887700535		0.3756345178		0.5840707965		0.6394557823		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0				0.6394557823		0.2887700535		0.4719827875				0.4078191494						6		0.2887700535		0.3756345178		0.5840707965		0.6394557823		0.6394557823		0.6394557823		0.6394557823		0.6394557823		0.6394557823		0.6394557823		0.6394557823		0.6394557823		0.6394557823		0.6394557823		0.6394557823		0.6394557823		0.6394557823		0.6394557823		0.6394557823		0.6394557823

		7		0.4496124031		0.606271777		0.6622073579		0.1308411215		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0				0.6622073579		0.1308411215		0.4622331649				0.7217505625						7		0.4496124031		0.606271777		0.6622073579		0.1308411215		0.6622073579		0.6622073579		0.6622073579		0.6622073579		0.6622073579		0.6622073579		0.6622073579		0.6622073579		0.6622073579		0.6622073579		0.6622073579		0.6622073579		0.6622073579		0.6622073579		0.6622073579		0.6622073579

		8		1		0.9847715736		1		0.275862069		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0				1		0.275862069		0.8151584106				0.7217505625						8		1		0.9847715736		1		0.275862069		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1

		9		0.7577639752		0.8888888889		0		0.6991869919		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0				0.8888888889		0.6991869919		0.7819466186				0.7217505625						9		0.7577639752		0.8888888889		0.8888888889		0.6991869919		0.8888888889		0.8888888889		0.8888888889		0.8888888889		0.8888888889		0.8888888889		0.8888888889		0.8888888889		0.8888888889		0.8888888889		0.8888888889		0.8888888889		0.8888888889		0.8888888889		0.8888888889		0.8888888889

		10		0.8779803647		1		0		0.7711213518		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0				1		0.7711213518		0.8830339055				0.7217505625						10		0.8779803647		1		1		0.7711213518		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1

		Compile/Test QP																																												Max		Min		Avg				Level Average						Minimum QP Calculation (if no values set to Max)

		Student #:		Stu1		Stu2		Stu3		Stu4		Stu5		Stu6		Stu7		Stu8		Stu9		Stu10		Stu11		Stu12		Stu13		Stu14		Stu15		Stu16		Stu17		Stu18		Stu19		Stu20																		Student #:		Stu1		Stu2		Stu3		Stu4		Stu5		Stu6		Stu7		Stu8		Stu9		Stu10		Stu11		Stu12		Stu13		Stu14		Stu15		Stu16		Stu17		Stu18		Stu19		Stu20

		Program #																																																										Program #		Number		Number		Number		Number		Number		Number		Number		Number		Number		Number		Number		Number		Number		Number		Number		Number		Number		Number		Number		Number

		1		0.0526281447		0.0087492295		0.0254677479		0.0035519287		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0				0.0526281447		0.0035519287		0.0225992627				0.0989642836						1		0.0526281447		0.0087492295		0.0254677479		0.0035519287		0.0526281447		0.0526281447		0.0526281447		0.0526281447		0.0526281447		0.0526281447		0.0526281447		0.0526281447		0.0526281447		0.0526281447		0.0526281447		0.0526281447		0.0526281447		0.0526281447		0.0526281447		0.0526281447

		2		0.014823236		0.015354017		0.450370305		0.0148380044		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0				0.450370305		0.014823236		0.1238463906				0.0989642836						2		0.014823236		0.015354017		0.450370305		0.0148380044		0.450370305		0.450370305		0.450370305		0.450370305		0.450370305		0.450370305		0.450370305		0.450370305		0.450370305		0.450370305		0.450370305		0.450370305		0.450370305		0.450370305		0.450370305		0.450370305

		3		0.2258715068		0.0425927639		0.3254217601		0.0079027589		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0				0.3254217601		0.0079027589		0.1504471974				0.0989642836						3		0.2258715068		0.0425927639		0.3254217601		0.0079027589		0.3254217601		0.3254217601		0.3254217601		0.3254217601		0.3254217601		0.3254217601		0.3254217601		0.3254217601		0.3254217601		0.3254217601		0.3254217601		0.3254217601		0.3254217601		0.3254217601		0.3254217601		0.3254217601

		4		0.2016505916		0.3792544571		0.1453301127		0.0191238521		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0				0.3792544571		0.0191238521		0.1863397534				0.2144880972						4		0.2016505916		0.3792544571		0.1453301127		0.0191238521		0.3792544571		0.3792544571		0.3792544571		0.3792544571		0.3792544571		0.3792544571		0.3792544571		0.3792544571		0.3792544571		0.3792544571		0.3792544571		0.3792544571		0.3792544571		0.3792544571		0.3792544571		0.3792544571

		5		0.0443479571		0.0995728384		0.0281057055		0.2860094728		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0				0.2860094728		0.0281057055		0.1145089935				0.2144880972						5		0.0443479571		0.0995728384		0.0281057055		0.2860094728		0.2860094728		0.2860094728		0.2860094728		0.2860094728		0.2860094728		0.2860094728		0.2860094728		0.2860094728		0.2860094728		0.2860094728		0.2860094728		0.2860094728		0.2860094728		0.2860094728		0.2860094728		0.2860094728

		6		0.1792365849		0.1570449396		0.4145018556		0.6196787994		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0				0.6196787994		0.1570449396		0.3426155449				0.2144880972						6		0.1792365849		0.1570449396		0.4145018556		0.6196787994		0.6196787994		0.6196787994		0.6196787994		0.6196787994		0.6196787994		0.6196787994		0.6196787994		0.6196787994		0.6196787994		0.6196787994		0.6196787994		0.6196787994		0.6196787994		0.6196787994		0.6196787994		0.6196787994

		7		0.4496124031		0.5641245412		0.6622073579		0.1308411215		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0				0.6622073579		0.1308411215		0.4516963559				0.6547686537						7		0.4496124031		0.5641245412		0.6622073579		0.1308411215		0.6622073579		0.6622073579		0.6622073579		0.6622073579		0.6622073579		0.6622073579		0.6622073579		0.6622073579		0.6622073579		0.6622073579		0.6622073579		0.6622073579		0.6622073579		0.6622073579		0.6622073579		0.6622073579

		8		1		0.9697750522		0.5948477752		0.275862069		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0				1		0.275862069		0.7101212241				0.6547686537						8		1		0.9697750522		0.5948477752		0.275862069		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1

		9		0.574206242		0.8888888889		0		0.5837871971		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0				0.8888888889		0.574206242		0.6822941093				0.6547686537						9		0.574206242		0.8888888889		0.8888888889		0.5837871971		0.8888888889		0.8888888889		0.8888888889		0.8888888889		0.8888888889		0.8888888889		0.8888888889		0.8888888889		0.8888888889		0.8888888889		0.8888888889		0.8888888889		0.8888888889		0.8888888889		0.8888888889		0.8888888889

		10		0.8779803647		1		0		0.5946281392		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0				1		0.5946281392		0.8242028346				0.6547686537						10		0.8779803647		1		1		0.5946281392		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1

		Quality Profile																																												Max		Min		Avg				Level Average

		Student #:		Stu1		Stu2		Stu3		Stu4		Stu5		Stu6		Stu7		Stu8		Stu9		Stu10		Stu11		Stu12		Stu13		Stu14		Stu15		Stu16		Stu17		Stu18		Stu19		Stu20

		Program #

		1		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0				0		0		0				0

		2		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0				0		0		0				0

		3		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0				0		0		0				0

		4		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0				0		0		0				0

		5		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0				0		0		0				0

		6		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0				0		0		0				0

		7		0.2997416021		0.4572438024		0.6622073579		0.0713678845		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0				0.6622073579		0.0713678845		0.3726401617				0.3980661481

		8		1		0.429135456		0.0534694629		0.0605964299		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0				1		0.0534694629		0.3858003372				0.3980661481

		9		0.2916603134		0.299562132		0		0.2169479449		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0				0.299562132		0.2169479449		0.2693901301				0.3980661481

		10		0.8779803647		0.6835443038		0		0.1694690197		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0				0.8779803647		0.1694690197		0.576997896				0.3980661481

		Average calculation, count the number of elements with data

		Student #:		Stu1		Stu2		Stu3		Stu4		Stu5		Stu6		Stu7		Stu8		Stu9		Stu10		Stu11		Stu12		Stu13		Stu14		Stu15		Stu16		Stu17		Stu18		Stu19		Stu20

		Program #		Number		Number		Number		Number		Number		Number		Number		Number		Number		Number		Number		Number		Number		Number		Number		Number		Number		Number		Number		Number				Totals

		1		1		1		1		1		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0				4

		2		1		1		1		1		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0				4

		3		1		1		1		1		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0				4

		4		1		1		1		1		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0				4

		5		1		1		1		1		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0				4

		6		1		1		1		1		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0				4

		7		1		1		1		1		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0				4

		8		1		1		1		1		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0				4

		9		1		1		0		1		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0				3

		10		1		1		0		1		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0				3

		Minimum QP Calculation (if no values set to Max)

		Student #:		Stu1		Stu2		Stu3		Stu4		Stu5		Stu6		Stu7		Stu8		Stu9		Stu10		Stu11		Stu12		Stu13		Stu14		Stu15		Stu16		Stu17		Stu18		Stu19		Stu20

		Program #		Number		Number		Number		Number		Number		Number		Number		Number		Number		Number		Number		Number		Number		Number		Number		Number		Number		Number		Number		Number

		1		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		2		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		3		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		4		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		5		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		6		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		7		0.2997416021		0.4572438024		0.6622073579		0.0713678845		0.6622073579		0.6622073579		0.6622073579		0.6622073579		0.6622073579		0.6622073579		0.6622073579		0.6622073579		0.6622073579		0.6622073579		0.6622073579		0.6622073579		0.6622073579		0.6622073579		0.6622073579		0.6622073579

		8		1		0.429135456		0.0534694629		0.0605964299		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1

		9		0.2916603134		0.299562132		0.299562132		0.2169479449		0.299562132		0.299562132		0.299562132		0.299562132		0.299562132		0.299562132		0.299562132		0.299562132		0.299562132		0.299562132		0.299562132		0.299562132		0.299562132		0.299562132		0.299562132		0.299562132

		10		0.8779803647		0.6835443038		0.8779803647		0.1694690197		0.8779803647		0.8779803647		0.8779803647		0.8779803647		0.8779803647		0.8779803647		0.8779803647		0.8779803647		0.8779803647		0.8779803647		0.8779803647		0.8779803647		0.8779803647		0.8779803647		0.8779803647		0.8779803647

		Yield

		Student #:		Stu1		Stu2		Stu3		Stu4		Stu5		Stu6		Stu7		Stu8		Stu9		Stu10		Stu11		Stu12		Stu13		Stu14		Stu15		Stu16		Stu17		Stu18		Stu19		Stu20

		Program #		Number		Number		Number		Number		Number		Number		Number		Number		Number		Number		Number		Number		Number		Number		Number		Number		Number		Number		Number		Number

		1		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		2		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		3		16.6666666667		0		3.7037037037		7.6923076923		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		4		0		0		0		5		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		5		11.1111111111		0		0		66.6666666667		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		6		0		21.4285714286		0		73.3333333333		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		7		85.7142857143		66.6666666667		90		66.6666666667		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		8		100		70		66.6666666667		72.2222222222		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		9		76.9230769231		75		0		84.375		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		10		84		100		0		60		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

				Development QP		Defects QP		Test QP		Yield		Review QP				Design/Code Time		Code Review Time		Compile Defect Density		Unit Test Defect Density		Design Review Time		QP

		Stu1		0		0.0526281447		0.2116244411		0		0				0.3793103448		0		0.2486865149		0.2116244411		0		0

				0		0.014823236		0.1351981352		0		0				1		0		0.1096408318		0.1351981352		0		0

				0		0.2258715068		0.3146067416		16.6666666667		0				1		0		0.7179487179		0.3146067416		0		0

				0		0.2016505916		0.2300884956		0		0				1		0		0.8764044944		0.2300884956		0		0

				0		0.0443479571		0.15455594		11.1111111111		0				1		0		0.2869379015		0.15455594		0		0

				0		0.1792365849		0.2887700535		0		0				0.8666666667		0		0.6206896552		0.2887700535		0		0

				0.6666666667		0.4496124031		0.4496124031		85.7142857143		1				0.6666666667		1		1		0.4496124031		1		0.2997416021

				1		1		1		100		1				1		1		1		1		1		1

				0.5079365079		0.574206242		0.7577639752		76.9230769231		1				0.5079365079		1		0.7577639752		0.7577639752		1		0.2916603134

				1		0.8779803647		0.8779803647		84		1				1		1		1		0.8779803647		1		0.8779803647

		Stu2		0		0.0087492295		0.2532751092		0		0				0.0934579439		0		0.0345443716		0.2532751092		0		0								Stu 2 Program 9

				0		0.015354017		0.1106612686		0		0				0.2150537634		0		0.1387478849		0.1106612686		0		0

				0		0.0425927639		0.1264637002		0		0				0.6545454545		0		0.3367983368		0.1264637002		0		0

				0		0.3792544571		1		0		0				0.6506024096		0		0.3792544571		1		0		0

				0		0.0995728384		0.2795698925		0		0				1		0		0.3561643836		0.2795698925		0		0

				0		0.1570449396		0.3756345178		21.4285714286		0				0.4534883721		0		0.418079096		0.3756345178		0		0

				0.8105369807		0.5641245412		0.606271777		66.6666666667		0.8105369807				1		0.9523809524		0.9304812834		0.606271777		0.8510638298		0.4572438024

				0.4425103069		0.9697750522		0.9847715736		70		0.4425103069				1		0.7118644068		0.9847715736		0.9847715736		0.6216216216		0.429135456

				0.3370073985		0.8888888889		0.8888888889		75		0.3370073985				1		0.8378378378		1		0.8888888889		0.4022346369		0.299562132

				0.6835443038		1		1		100		0.6835443038				1		1		1		1		0.6835443038		0.6835443038

		Stu3		0		0.0254677479		0.1873111782		0		0

				0		0.450370305		0.6710963455		0		0

				0		0.3254217601		0.6361422309		3.7037037037		0

				0		0.1453301127		0.5507246377		0		0

				0		0.0281057055		0.1351981352		0		0

				0		0.4145018556		0.5840707965		0		0						Design Review Time		Unit Test Defect Density		Compile Defect Density		Code Review Time

				1		0.6622073579		0.6622073579		90		1

				0.0898876404		0.5948477752		1		66.6666666667		0.0898876404

				0		0		0		0		0

				0		0		0		0		0

		Stu4		0		0.0035519287		0.0595980596		0		0

				0		0.0148380044		0.0826842421		0		0

				0		0.0079027589		0.0705009276		7.6923076923		0

				0		0.0191238521		0.1209630065		5		0

				0		0.2860094728		0.5347985348		66.6666666667		0

				0		0.6196787994		0.6394557823		73.3333333333		0

				0.5454545455		0.1308411215		0.1308411215		66.6666666667		0.5454545455

				0.2196620584		0.275862069		0.275862069		72.2222222222		0.2196620584

				0.3716216216		0.5837871971		0.6991869919		84.375		0.3716216216

				0.285		0.5946281392		0.7711213518		60		0.9

		Stu5		0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

		Stu6		0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

		Stu7		0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

		Stu8		0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

		Stu9		0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

		Stu10		0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

		Stu11		0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

		Stu12		0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

		Stu13		0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

		Stu14		0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

		Stu15		0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

		Stu16		0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

		Stu17		0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

		Stu18		0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

		Stu19		0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

		Stu20		0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

				0		0		0		0		0

&F

Page &P

QUALITY

		0

		0

		0

		0

		0

		0

		0.6666666667

		1

		0.5079365079

		1

		0

		0

		0

		0

		0

		0

		0.8105369807

		0.4425103069

		0.3370073985

		0.6835443038

		0

		0

		0

		0

		0

		0

		1

		0.0898876404

		0

		0

		0

		0

		0

		0

		0

		0

		0.5454545455

		0.2196620584

		0.3716216216

		0.285

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

&F

Page &P

Dev QP

Defects QP

Dev QP vs Defects
 QP - Class

0.0526281447

0.014823236

0.2258715068

0.2016505916

0.0443479571

0.1792365849

0.4496124031

1

0.574206242

0.8779803647

0.0087492295

0.015354017

0.0425927639

0.3792544571

0.0995728384

0.1570449396

0.5641245412

0.9697750522

0.8888888889

1

0.0254677479

0.450370305

0.3254217601

0.1453301127

0.0281057055

0.4145018556

0.6622073579

0.5948477752

0

0

0.0035519287

0.0148380044

0.0079027589

0.0191238521

0.2860094728

0.6196787994

0.1308411215

0.275862069

0.5837871971

0.5946281392

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

&F

Page &P

Max

Min

Average

PSP Level Average

Program Number

Quality Profile

Quality Profile Class

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.6622073579

0.0713678845

0.3726401617

0.3980661481

1

0.0534694629

0.3858003372

0.3980661481

0.299562132

0.2169479449

0.2693901301

0.3980661481

0.8779803647

0.1694690197

0.576997896

0.3980661481

		0

		0

		0

		0

		0

		0

		0.6666666667

		1

		0.5079365079

		1

		0

		0

		0

		0

		0

		0

		0.8105369807

		0.4425103069

		0.3370073985

		0.6835443038

		0

		0

		0

		0

		0

		0

		1

		0.0898876404

		0

		0

		0

		0

		0

		0

		0

		0

		0.5454545455

		0.2196620584

		0.3716216216

		0.285

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

Dev QP

Yield

Dev QP vs Yield

0

0

16.6666666667

0

11.1111111111

0

85.7142857143

100

76.9230769231

84

0

0

0

0

0

21.4285714286

66.6666666667

70

75

100

0

0

3.7037037037

0

0

0

90

66.6666666667

0

0

0

0

7.6923076923

5

66.6666666667

73.3333333333

66.6666666667

72.2222222222

84.375

60

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

		0

		0

		0

		0

		0

		0

		0.6666666667

		1

		0.5079365079

		1

		0

		0

		0

		0

		0

		0

		0.8105369807

		0.4425103069

		0.3370073985

		0.6835443038

		0

		0

		0

		0

		0

		0

		1

		0.0898876404

		0

		0

		0

		0

		0

		0

		0

		0

		0.5454545455

		0.2196620584

		0.3716216216

		0.285

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

Dev QP

Test QP

Dev QP vs Test
 QP - Class

0.2116244411

0.1351981352

0.3146067416

0.2300884956

0.15455594

0.2887700535

0.4496124031

1

0.7577639752

0.8779803647

0.2532751092

0.1106612686

0.1264637002

1

0.2795698925

0.3756345178

0.606271777

0.9847715736

0.8888888889

1

0.1873111782

0.6710963455

0.6361422309

0.5507246377

0.1351981352

0.5840707965

0.6622073579

1

0

0

0.0595980596

0.0826842421

0.0705009276

0.1209630065

0.5347985348

0.6394557823

0.1308411215

0.275862069

0.6991869919

0.7711213518

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

		0

		0

		0

		0

		0

		0

		1

		1

		1

		1

		0

		0

		0

		0

		0

		0

		0.8105369807

		0.4425103069

		0.3370073985

		0.6835443038

		0

		0

		0

		0

		0

		0

		1

		0.0898876404

		0

		0

		0

		0

		0

		0

		0

		0

		0.5454545455

		0.2196620584

		0.3716216216

		0.9

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

Review QP

Defects QP

Review QP vs Defects
 QP - Class

0.0526281447

0.014823236

0.2258715068

0.2016505916

0.0443479571

0.1792365849

0.4496124031

1

0.574206242

0.8779803647

0.0087492295

0.015354017

0.0425927639

0.3792544571

0.0995728384

0.1570449396

0.5641245412

0.9697750522

0.8888888889

1

0.0254677479

0.450370305

0.3254217601

0.1453301127

0.0281057055

0.4145018556

0.6622073579

0.5948477752

0

0

0.0035519287

0.0148380044

0.0079027589

0.0191238521

0.2860094728

0.6196787994

0.1308411215

0.275862069

0.5837871971

0.5946281392

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

		1		1		1		1

		2		2		2		2

		3		3		3		3

		4		4		4		4

		5		5		5		5

		6		6		6		6

		7		7		7		7

		8		8		8		8

		9		9		9		9

		10		10		10		10

Definitions:
Quality Profile - takes into account design/coding time ratio, dr/design time ratio, cr/code time ratio, compile defect density, & unit test defect density
Development (or Dev) QP - only takes into account design/coding time ratio, dr/design time ratio, and cr/code time ratio
Defects QP - only takes into account compile defect density & unit test defect density
Test QP - only takes into account unit test defect density

Max

Min

Average

PSP Level Average

Program Number

Quality Profile

Defects QP Class

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

5

5

5

5

6

6

6

6

7

7

7

7

8

8

8

8

9

9

9

9

10

10

10

10

0.0526281447

0.0035519287

0.0225992627

0.0989642836

0.450370305

0.014823236

0.1238463906

0.0989642836

0.3254217601

0.0079027589

0.1504471974

0.0989642836

0.3792544571

0.0191238521

0.1863397534

0.2144880972

0.2860094728

0.0281057055

0.1145089935

0.2144880972

0.6196787994

0.1570449396

0.3426155449

0.2144880972

0.6622073579

0.1308411215

0.4516963559

0.6547686537

1

0.275862069

0.7101212241

0.6547686537

0.8888888889

0.574206242

0.6822941093

0.6547686537

1

0.5946281392

0.8242028346

0.6547686537

Max

Min

Average

PSP Level Average

Program Number

Quality Profile

Test QP Class

0.2532751092

0.0595980596

0.177952197

0.2382635317

0.6710963455

0.0826842421

0.2499099978

0.2382635317

0.6361422309

0.0705009276

0.2869284001

0.2382635317

1

0.1209630065

0.4754440349

0.4078191494

0.5347985348

0.1351981352

0.2760306256

0.4078191494

0.6394557823

0.2887700535

0.4719827875

0.4078191494

0.6622073579

0.1308411215

0.4622331649

0.7217505625

1

0.275862069

0.8151584106

0.7217505625

0.8888888889

0.6991869919

0.7819466186

0.7217505625

1

0.7711213518

0.8830339055

0.7217505625

		1		1		1		1

		2		2		2		2

		3		3		3		3

		4		4		4		4

		5		5		5		5

		6		6		6		6

		7		7		7		7

		8		8		8		8

		9		9		9		9

		10		10		10		10

Max

Min

Average

PSP Level Average

Program Number

Design QP
 (min(Design Time / Code Time, 1))

Design QP Class

0.3793103448

0.0934579439

0.1984608133

0.4355937735

1

0.0558139535

0.4561097864

0.4355937735

1

0.2145015106

0.6522107209

0.4355937735

1

0.3134328358

0.6322425776

0.7894528951

1

1

1

0.7894528951

1

0.4534883721

0.7361161078

0.7894528951

1

0.6666666667

0.9166666667

0.8922335601

1

1

1

0.8922335601

1

0.5079365079

0.835978836

0.8922335601

1

0.3166666667

0.7722222222

0.8922335601

		1		1		1		1

		2		2		2		2

		3		3		3		3

		4		4		4		4

		5		5		5		5

		6		6		6		6

		7		7		7		7

		8		8		8		8

		9		9		9		9

		10		10		10		10

Max

Min

Average

PSP Level Average

Program Number

Code Review QP
 (min(2*CR Time / Code Time, 1))

Code Review QP Class

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0.9523809524

0.9880952381

0.9307939611

1

0.6290322581

0.8352241662

0.9307939611

1

0.8378378378

0.9459459459

0.9307939611

1

0.9

0.9666666667

0.9307939611

		1		1		1		1

		2		2		2		2

		3		3		3		3

		4		4		4		4

		5		5		5		5

		6		6		6		6

		7		7		7		7

		8		8		8		8

		9		9		9		9

		10		10		10		10

Max

Min

Average

PSP Level Average

Program Number

Design Review QP
 (min(2*DR Time / Design Time, 1))

Design Review QP Class

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0.5454545455

0.8491295938

0.7081881821

1

0.0898876404

0.5151789028

0.7081881821

1

0.3716216216

0.5912854195

0.7081881821

1

0.6835443038

0.8945147679

0.7081881821

		

