S T S C

Software Engineering Environment

Technology Report

April 1994

Software Engineering Environment Domain

Robert Hanrahan

Charles Daud

Kenneth Meiser

Judi Peterson

This technical report was prepared by the Software Technology Support Center, OO-ALC/TISE, Hill AFB, Utah.

The ideas and findings expressed in this report should not be construed as an official position of the United States Air Force. It is published in the interest of scientific and technical information exchange.

This document is available through the Software Technology Support Center (STSC). To obtain a copy, contact STSC Customer Service, OO-ALC/TISE, 7278 Fourth Street, Hill AFB, UT 84056-5205; Voice: 801-777-7703, DSN 458-7703, Fax: 801-777-8069, e-mail: mcdonalb@stsc.hill.af.mil.
Preface
Software Engineering Environment (SEE) technology is one of several software product domains being investigated by the U. S. Air Force's Software Technology Support Center (STSC) at the Ogden Air Logistics Center, Hill Air Force Base, Utah. This report is produced by the STSC to increase awareness and understanding of SEE technology. The information in this report is aimed at Air Force managers and technical people who must make the decisions about acquiring SEE technology and who must prepare their organizations to employ it effectively; use of this report should be the first step in that process.

This report examines the software challenges facing today's Air Force and the role of SEE technology in meeting these challenges. The concepts of SEE technology are introduced and explained. The report examines current SEE technology and provides information about specific products in the marketplace. Finally, the report addresses future directions in SEE technology as an aid in planning long-range strategies.

It is assumed that readers of this report are familiar with Department of Defense and Air Force software policies and practices.

Table of Contents

Preface
 iii

1
Introduction
 1-1

1.1
Purpose of Report
 1-1

1.2
Intended Audience of Report
 1-1

1.3
Software Challenges
 1-1

1.3.1
Improving software quality and productivity
 1-2

1.3.2
Providing affordable weapon system flexibility
 1-2

1.3.3
Ways in which the Air Force is meeting the software challenges
 1-3

1.4
SEE Technology
 1-4

2
SEE Technology Tutorial
 2-1

2.1
Purpose and Objectives of SEE Technology
 2-1

2.1.1
Management issues
 2-1

2.1.2
Benefits
 2-2

2.2
Concepts
 2-2

2.2.1
Software Engineering Environment
 2-2

2.2.2
Services
 2-3

2.2.3
Repository
 2-4

2.2.4
Framework
 2-5

2.2.5
Tools
 2-5

2.2.6
Integration
 2-6

2.2.7
Open versus closed SEE
 2-7

2.3
Historical Background
 2-7

2.3.1
Computer-aided software engineering (CASE)
 2-8

2.3.2
Integrated project support environment (IPSE)
 2-8

2.3.3
CASE coalition
 2-8

3
Specific Considerations
 3-1

3.1
Reference Models (RMs)
 3-1

3.1.1
NIST/ECMA Frameworks RM
 3-1

3.1.2
RM for a Project Support Environment (PSE).
 3-1

3.2
Standards
 3-1

3.2.1
General Information
 3-1

3.2.2
Conclusions
 3-2

4
State of SEE Technology
 4-1

4.1
Summary of State-of-the-Practice
 4-1

4.2
Summary of the State-of-the-Art
 4-2

4.3
Government Initiatives
 4-2

4.3.1
The Process-Oriented Software Life Cycle Support Environment (ProSLCSE)
 4-3

4.3.2
Software Technology for Adaptable Reliable Systems (STARS) Program

 4-3

4.3.3
Integrated Computer-Aided Software Engineering (I-CASE)
 4-3

4.3.4
The Software Technology Support Center (STSC)
 4-3

4.3.5
The Integrated SEE Special Interest Group (ISEE SIG)
 4-4

4.3.6
The Software Engineering Institute (SEI)
 4-4

4.3.7
The Project Support Environment Standards Working Group (PSESWG)
 4-4

4.3.8
Corporate Information Management (CIM) Program
 4-4

4.4
Future Directions and Trends
 4-5

4.4.1
Software development process
 4-5

4.4.2
Reuse
 4-6

4.4.3
Security
 4-6

5
Applications
 5-1

5.1
Why Do You Use SEE Technology?
 5-1

5.2
When Do You Use SEE Technology?
 5-1

5.3
How Do You Use SEE Technology?
 5-2

5.4
Important Issues
 5-3

5.5
Management and Business Matters
 5-3

5.6
Technical Hints
 5-4

5.6.1
Organizational needs
 5-4

5.6.2
Product requirements
 5-5

5.6.3
Vendor evaluation
 5-5

5.7
Acquisition of a SEE
 5-6

6
SEE Technology Products
 6-1

6.1
Scope
 6-1

6.2
The Information Gathering Process
 6-1

6.3
Product Lists
 6-1

6.4
Product Sheets/Vendor Questionnaires
 6-2

6.5
Product Critiques
 6-2

6.6
Criteria
 6-2

7
Conclusions
 7-1

List of Appendices

Appendix A
Acronyms and Terms

Appendix B
Glossary

Appendix C
SEE Products List by Source

Appendix D
SEE Product Sheets

Appendix E
SEE Product Critiques

Appendix F
SEE Product Features Matrix

Appendix G
Standards

Appendix H
Bibliography

Appendix I
Recommended Reading

List of Figures

Figure 2-1: Framework Services
 2-4

Figure 2-2: Conceptual Model vs. Actual Model
 2-6

List of Tables

SEE Products List by Source
 C-2

SEE Features Matrix
 F-7

1
Introduction

This section states the purpose of the report, identifies the intended audience, and discusses the software challenges facing the Air Force.

1.1
Purpose of Report

The purpose of this report is to impart a basic understanding of Software Engineering Environment (SEE) technology, give an update of its current state, recommend guidelines on when and how to use it, and provide information on its major products. SEE technology is one of several technology domains studied by the Software Technology Support Center (STSC) in fulfillment of its mission to "assist Air Force software organizations to identify, evaluate, and adopt technologies that will improve the quality of their software products, their efficiency in producing them, and their ability to accurately predict the cost and schedule of their delivery."
 The STSC's mission is carried out using technology evaluation, information exchange, and technology insertion. This report is the primary means by which the STSC shares the information it is gathering through its on-going evaluation of SEE technology.

1.2
Intended Audience of Report

Managers and others who are responsible for choosing, recommending, or guiding the implementation of technologies and products for the development and post-deployment support of software within the Air Force are the intended audience for this report.

1.3
Software Challenges

Improving software quality and productivity is a major challenge faced by the Air Force, along with the rest of the Department of Defense (DoD) and the nonmilitary community as well. In addition, providing affordable weapon system flexibility through software is a specific challenge the Air Force accepts as a member of the United States military establishment.

1.3.1
Improving software quality and productivity

Improving software quality is basically to improve how well software meets the requirements and expectations of the users. It also means ensuring that software is adequate, reliable, and efficient. Improving productivity means favorably increasing the ratio between the resources required to develop software and the size and complexity of the developed software.

The growth in computer use and computer hardware capabilities has placed demands of increasing magnitude and complexity on computer software. Software development processes, along with the attendant methodologies, which may have worked well in the past, often break down when applied to the development of today's software. For example, studies show that every five years the sizes of software projects, as measured by source lines of code (SLOC), increase by an order of magnitude, and that the scaling of the development effort demanded by the order-of-magnitude increases, requires fundamental changes in the development process. As the sizes of software projects have increased, software development processes based on individual programmers have given way to processes based on small teams and, in turn, small teams have given way to larger teams. Scaling up software development processes by merely increasing team sizes reaches limits on effective project management and resources availability [CURTIS].

Today's users of software, demand software applications of greater size and complexity than before. Advances in computer hardware capabilities are more than adequate to match the demands of users; however, software, as it is developed using prevalent processes and methodologies, is not. The challenge is finding software development processes with attendant methodologies and technologies that meet user demands and that improve software quality and productivity.

1.3.2
Providing affordable weapon system flexibility

The military, like the business world today, sees software providing the versatility and leverage to achieve its performance goals. For example, software demonstrated its flexibility to quickly change weapon system capabilities in Desert Storm, the most newsworthy being the development of a new software package for the Patriot Missile system to counter the SCUD. Because of the versatility and leverage provided by software, the DoD's appetite for software in the future has been described as "virtually insatiable" [MOSEMANN 93].

In today's world of shrinking budgets, providing affordable, flexible software systems requires cost control and predictability that are not found in the prevalent, traditional software development processes. Increasingly, the Air Force demands that software be developed within predictable costs and schedule.

1.3.3
Ways in which the Air Force is meeting the software challenges

(1)
Process Improvement

The Air Force is committed to a policy of software development process improvement. Through process improvement, the Air Force expects to overcome the limitations inherent in the traditional process models used for software development. The Software Engineering Institute (SEI), as a Federally Funded Research and Development Center (FFRDC) sponsored by the DoD, has recognized that process capability is built in progressive stages, which the SEI calls maturity levels. Each maturity level provides a foundation for the improvements needed to reach the next level. The SEI has formalized this concept of maturity levels for software organizations in a model called the Capability Maturity Model (CMM) [MCKEEHAN 93]. Currently, the Air Force's process improvement policy is based on using the CMM to raise the maturity level of its software organizations.

Another way that the Air Force facilitates its process improvement policy is by establishing Software Engineering Process Groups (SEPGs) and providing training to its organizations in the management of technological change.

(2)
Technology Insertion

The Air Force uses technology insertion as a means to improve software quality and productivity within its organizations, especially technology that provides the leverage to overcome the limitations of managing complex projects within budget constraints. The Air Force established the STSC to advance this kind of technology insertion. Additionally, software technology insertion has been facilitated by the Air Force through the funding of pilot projects for the evaluation and promotion of technologies.

(3)
Other Policies

Other software policies of note are the mandating of DoD-approved higher-order languages for software development, the most well known being Ada; encouraging the reuse of existing software and designing new software for reuse; and requiring the implementation of effective software measurement in the process of managing software development.

1.4
SEE Technology

The DoD has looked to SEE technology as a means to improve software quality and software development productivity, and to enable the predictability in costs and schedule required to develop and maintain complex software systems. SEE technology supports and facilitates the software development process and post-deployment software support through the automation of software engineering practices.

SEEs provide the infrastructure and means to integrate the software tools that assist the system analyst, software designer, programmer, configuration manager, software tester, quality assurance engineer, project manager, reuse engineer, and so on, with the development, management, and maintenance of software throughout its life cycle. SEEs collect, store, and make available the artifacts of software engineering, such as requirements, design documents, code, test plans, metrics, schedules, and resource allocations. SEEs provide communications between team members, and between the technical and management. SEEs promote common user interfaces among software tools, reduce redundant information, and facilitate coordination of development activities.

2
SEE Technology Tutorial

This section introduces the concepts and background needed for a basic understanding of SEE technology. In this section, the purpose and objectives of SEE technology, as well as related management issues and benefits, are presented. Some of the information in this section is based on work done by the U. S. Department of Commerce's National Institute of Standards and Technology (NIST), the U. S. Navy's Next Generation Computer Resources (NGCR) Program, and the Software Engineering Institute (SEI).

2.1
Purpose and Objectives of SEE Technology

The purpose of SEE technology is to provide automated support to the software development and post-development processes, especially for large-scale or complex applications. Objectives for using SEE technology are to improve software quality and productivity, and to enhance predictability and, in turn, reduce the risk associated with software development.

2.1.1
Management issues

Software development and post-deployment software support, especially for large-scale and complex systems, are labor-intensive efforts that require high skill levels, above average intellect, and creative talent. Traditional software practices tend to squander these labor resources through inadequate control, miscommunications, rework, and lack of relief from noncreative tasks. Traditional practices often deny the project manager the information needed to effectively use labor resources, i.e., efficiency, to meet cost and schedule projections, i.e., predictability, or to establish realistic projections in the first place.

SEE technology facilitates project management by making timely and complete project information visible to the project manager [BROWN 92]. This visibility gives the manager information on the actual development status allowing the manager to more effectively utilize available resources which, in turn, reduces the risk of not meeting the cost and schedule goals of the project. Project information captured in this way improves the predictability and repeatability of the software development processes. In a talk at the 1993 Software Technology Conference (STC) the Deputy Assistant Secretary (Communications, Computers and Logistics) of the Air Force stated that predictability is what the Pentagon wants in its software processes [MOSEMANN 93].

2.1.2
Benefits

When looking at the benefits of SEE technology, it must be kept in mind that the application of SEE technology, in and of itself, is not a "silver bullet"; the benefits are realized by the organization that has effective software processes defined and enacted. Overall, effective use of SEE technology betters an organization's software quality and productivity by enhancing the organization's ability to produce and deliver software, within budget and with fewer problems, that meets users' requirements. Continued use of SEE technology achieves greater predictability and repeatability from an organization's software development and post-development processes through tool configurations designed for the work flow process, through automating parts of the process, and through the capture of useful metrics [CUTHILL 94].

The following potential benefits also are derived from SEE technology through the integration of tools across the software life cycle:

SYMBOL 167 \f "Wingdings" \s 10 \h
Integration of requirements definition, design, and testing tools to support automatic test case generation

SYMBOL 167 \f "Wingdings" \s 10 \h
Streamlining the traceability of requirements through design, coding, testing, and documentation preparation

SYMBOL 167 \f "Wingdings" \s 10 \h
Developing consistent versions of requirements, design, code, documentation, and testing products

SYMBOL 167 \f "Wingdings" \s 10 \h
Automatic reformatting and translation of products from one tool to another

SYMBOL 167 \f "Wingdings" \s 10 \h
Process support from tools designed to encourage adherence to process guideline.

[CUTHILL 94]

2.2
Concepts

The following paragraphs introduce and explain concepts that are essential to understanding SEE technology.

2.2.1
Software Engineering Environment

A software engineering environment is a collection of software components working together for the purpose of providing automated support of software engineering activities. A SEE facilitates the development and post-deployment support, i.e., maintenance, of software and the management of the software process.

2.2.2
Services

As an aid in classifying the functions performed by a SEE, the concept of services was created; essentially, a service is a function performed by a SEE. The services of a SEE are assigned to one of two classifications: (1) the services used directly by the end-user of the SEE, called the end-user services; and (2) the services that underlie and support the end-user services, called the framework services [NIST 93].

End-user services are the functions that directly support the execution of a software project. End-user services are also referred to as application development, engineering, or project life cycle services [NIST 93]. These services are grouped into the following categories:

SYMBOL 167 \f "Wingdings" \s 10 \h
Technical Engineering services that "support activities related to the specification, implementation, and maintenance of systems"

SYMBOL 167 \f "Wingdings" \s 10 \h
Technical Management services that support configuration management, change management, information management, reuse management, and metrics

SYMBOL 167 \f "Wingdings" \s 10 \h
Project Management services that "support activities related to planning and executing a project." Included in these services are estimating, risk analysis, and project tracking

SYMBOL 167 \f "Wingdings" \s 10 \h
Support services that "include services used by all users," such as text processing, publishing, electronic mail (e-mail), and bulletin board.

[NGCR 93b]

Framework services underlie and support the end-user services. Framework services are grouped into the following categories:

SYMBOL 167 \f "Wingdings" \s 10 \h
Object Management services, the purpose of which "is the definition, storage, maintenance, management, and access of object entities and the relationships among them"

SYMBOL 167 \f "Wingdings" \s 10 \h
Process Management services that provide facilities for process capture and enforcement

SYMBOL 167 \f "Wingdings" \s 10 \h
Communication service that provides a standard communication mechanism that can be used between the software components of the SEE

SYMBOL 167 \f "Wingdings" \s 10 \h
Operating System services that "include those services that are usually considered part of an operating system or executive"

SYMBOL 167 \f "Wingdings" \s 10 \h
User Interface services that provide for interaction with other services in a consistent manner

SYMBOL 167 \f "Wingdings" \s 10 \h
Policy Enforcement services that provide for user identification and authentication and other activities related to security.

[NIST 93]

Figure 2-1 (often referred to as the "toaster model") is an aid in conceptualizing the groupings of the framework services; it is not to be construed as an architecture of a SEE framework. The Policy Enforcement services grouping is not shown in the figure. The "tools", indicated in the figure, encompass the end-user services that are supported by the framework.

[image: image1.wmf]Tools

.

Process Management Services

User Interface Services

Communication Services

Object Management Services

Figure 2-1. Framework Services [NIST 93].
2.2.3
Repository

The repository is a mechanism for storing, organizing, and making available all the information concerning a software system and project [MCCLURE 89]. Information in the repository typically covers the following topics:

SYMBOL 167 \f "Wingdings" \s 10 \h
the software under development—requirements, design specifications and data, source code, test data, and project plans

SYMBOL 167 \f "Wingdings" \s 10 \h
project resources

SYMBOL 167 \f "Wingdings" \s 10 \h
organization policy, standards, and guidelines on the production of software

SYMBOL 167 \f "Wingdings" \s 10 \h
post-development modifications [NIST 93].

A repository can supply many of the framework services listed in paragraph 2.2.2, especially the Object Management services [CUTHILL 94].

For a SEE to be effective, the repository must be shared and accessible by all the services. Having a shared repository is necessary to derive the maximum benefits from reusability, process management, and configuration control.

Terms often used synonymously with repository are database, data dictionary, and encyclopedia. These terms fail to capture the full meaning of a repository. A database is a means by which a repository is implemented. Data dictionaries and encyclopedias are usually associated more with passive storage of data; a repository is considered to be active storage.

2.2.4
Framework

The framework is the kernel of the SEE; it provides the framework services described in paragraph 2.2.2. In addition, the framework includes services for the administration of the framework, interfaces to the end-user services, and mechanisms for integrating the end-user services into the SEE [BROWN 92]. The framework implementation is the actual software product, or products, that provide the framework services within a specific SEE. Framework services are a conceptual model that has proven useful in identifying and categorizing the capabilities expected in a framework. A framework implementation is the actual model of the software products selected to provide the particular framework services desired in a SEE (see Figure 2-2).

2.2.5
Tools

Tools are the actual software components that provide the desired end-user services within an implementation of a SEE. Analogous to the conceptual model and the actual model discussed in paragraph 2.2.4, end-user services belong to the conceptual model and tools to the actual model (see Figure 2-2).

[image: image2.wmf]service c

service a

service d

service b

End-user

Services

Framework

Services

tool 2

tool 1

tool 3

framework

implementation

Conceptual

 Model

 Actual

 Model

End-user tools and

framework implementation

Figure 2-2. Conceptual Model vs. Actual Model [PSESWG 93].
2.2.6
Integration

Basically, integration is the process of combining software components, hardware components, or both, into an overall system [IEEE 90]. Integration is what transforms a collection of unrelated software tools into a SEE. Generally, the mechanisms for doing this are:

SYMBOL 167 \f "Wingdings" \s 10 \h
data integration—the sharing of information throughout the SEE, such as through a repository shared by all software components

SYMBOL 167 \f "Wingdings" \s 10 \h
control integration—the synchronization of activities within a SEE

SYMBOL 167 \f "Wingdings" \s 10 \h
presentation integration—providing common look and feel to the user interacting with the SEE

SYMBOL 167 \f "Wingdings" \s 10 \h
process integration—the accessing of SEE functions based on a defined and enactable development process

SYMBOL 167 \f "Wingdings" \s 10 \h
framework integration—the degree to which the tools make effective use of the framework [NIST 93].

In a SEE implementation, one or more of the integration mechanisms will be present at some level. An appropriate level of integration can increase the productivity of SEE users, for example, by reducing their training time through the use of presentation integration or by eliminating the burden of handling data in redundant files through data integration. One's perspective, whether a SEE user, SEE builder, or tool builder, colors what is expected or desired in the way of integration. SEE users are concerned with their interaction with the SEE—the touch and look, the ease with which tasks can be performed, and the degree to which the SEE functions as one consistent tool. The SEE builder and tool builder desires a consistent interface for building tools and is concerned with how the SEE is structured, i.e., its architecture, and how its components relate to each other [NIST 93].

2.2.7
Open versus closed SEE

A closed SEE, also referred to as a closed environment, is an environment that is provided essentially as a "black box," usually (but not necessarily) by one vendor. Consequently, tailoring of the environment by the customer with tools and framework products other than the vendor's is either not permitted or requires significant effort and cost to do. By contrast, an open SEE, also referred to as an open environment, allows the intermixing of tools and framework products from more than one vendor. Both types of environments have advantages and disadvantages.

Closed environments usually exhibit a high level of integration for the user and represent much less effort to install than an open environment. Experience shows that it is costly for a single vendor to design and build an entire SEE, including the upgrades and changes that are endemic of software products; consequently, the customer assumes a great deal of risk by being locked to a single vendor, especially as SEE technology continues to emerge and evolve.

The Federal government, including DoD, favors open environments; most important, the DoD does not see its best interests being served by dependence on a single supplier. Open environments allow tailoring of the SEE's functionality to match the needs of the project and the flexibility to use various methodologies. Adversely, open environments place greater demands than closed environments on the planning for and the procurement and installation of a SEE within an organization. Integration of an open environment is usually harder to achieve than a closed one.

2.3
Historical Background

This subsection describes approaches that have been taken historically to automate the software development process and that have been instrumental in the evolution to SEE technology.

2.3.1
Computer-aided software engineering (CASE)

CASE is defined to be the use of computers to aid in the software engineering process [IEEE 90]. Efforts in the early 1980s to automate software development documentation and diagramming, as well as the rise of the personal workstation for developing software, led to the emergence of CASE technology [MCCLURE 89]. As CASE tools proliferated, a differentiation into upper CASE tools and lower CASE tools appeared. Upper CASE tools support the requirements analysis and high-level design phases of the software life cycle; lower CASE tools support the software testing phase of the life cycle and also have been referred to as Computer-Aided Software Testing (CAST). By the mid-1980s, implementations of CASE tools usually had a design database and extensive graphic capabilities.

2.3.2
Integrated project support environment (IPSE)

IPSE is an early SEE model that evolved in the 1980s from the concept of an Ada programming support environment (APSE). An IPSE is characterized by the use of data integration as a strategy for incorporating tools. An IPSE uses a data repository and an attendant data sharing mechanism for the integration of tools. The IPSE model of a SEE has found widespread acceptance with large-scale software developers.

2.3.3
CASE coalition

CASE coalition is a type of SEE that appeared in the same time frame as the IPSE model and is characterized by the use of control integration as a strategy for incorporating tools. CASE coalition has proved popular among CASE tool vendors due to the low cost of integrating their products into the environment and has led to alliances among the vendors.

3
Specific Considerations

In this section, the focus is on reference models and standards that apply to SEE technology.

3.1
Reference Models (RMs)

RMs were developed as a conceptual aid for examining standards and products [CUTHILL 94]. Two RMs important to SEEs are identified in the following paragraphs.

3.1.1
NIST/ECMA Frameworks RM

This RM was developed by the European Computer Manufacturers Association (ECMA, pronounced "ek-ma") and was modified by the National Institute of Standards and Technology (NIST) Integrated Software Engineering Environment (ISEE) Working Group. It is one of the most complete specifications of what constitutes a SEE framework and has been adopted by the STSC as the basis for evaluating SEE frameworks. Refer to [NIST 93] for complete definition of the RM.

3.1.2
RM for a Project Support Environment (PSE).

This RM was produced by the Project Support Environment Standards Working Group (PSESWG, pronounced "peace-wig") of the U. S. Navy's Next Generation Computer Resources (NGCR) program. The RM specifies the services and interfaces that constitute a PSE; it is not a general RM for SEEs. The PSE RM can be used as a guide for understanding PSEs and developing requirements for a specific PSE. It incorporates the NIST/ECMA Frameworks RM for its framework services. Refer to [NGCR 93b] for complete definition of the RM.

3.2
Standards

3.2.1
General Information

Standards provide much of the nomenclature encountered in SEE technology and are important within the DoD when it comes to the acquisition and implementation of a SEE. Standards are necessary to implement an open SEE. Without them, the implementor of an open SEE faces an arduous task installing tools and trying to provide interoperability and commonality among the tools. With standards, "plug and play" tool installation and interoperability are facilitated for the implementor, and common "look and feel" are facilitated for the end-user. Standards can also promote portability of tools from one framework to another and applications from one platform to another.

Standards are specifications that have been widely accepted by a community of users. Standards that are relevant to SEEs have been, and are being, produced by numerous national and international organizations. Three widely known standards organizations, which are involved with SEE technology, are the Institute of Electrical and Electronics Engineers (IEEE), the American National Standards Institute (ANSI), and the International Standards Organization (ISO). Another source for standards, besides standards organizations, is SEE-relevant commercial products that become what are known as de facto standards, such as UNIX and Microsoft's Windows. De facto standards often prove to be more popular than official standards because they are usually associated with a widely used, successful product, which makes them commercially viable. Official standards, on the other hand, are usually lacking a commercial incentive, may be slow reaching a consensus, and may represent a compromise among conflicting approaches.
The principal SEE-related standards are classified into seven categories:

SYMBOL 167 \f "Wingdings" \s 10 \h
framework standards

SYMBOL 167 \f "Wingdings" \s 10 \h
graphical user interface (GUI, pronounced "gooey") standards

SYMBOL 167 \f "Wingdings" \s 10 \h
data repository standards

SYMBOL 167 \f "Wingdings" \s 10 \h
platform or operating system interface standards

SYMBOL 167 \f "Wingdings" \s 10 \h
tool interchange standards

SYMBOL 167 \f "Wingdings" \s 10 \h
security standards

SYMBOL 167 \f "Wingdings" \s 10 \h
other.

Refer to Appendix G for information on specific standards and organizations that develop and promote standards.

3.2.2
Conclusions

The products that come out of SEE technology are affected by two kinds of standards: (1) those standards specifically related to SEEs, and (2) those that have a much broader application. The popularity of the broader standards, such as X-Windows, Ethernet, and Portable Operating System Interface (POSIX), can be an important selling point for SEE products. In time, today's standards can be supplemented, or even replaced, as new standards become accepted and popular.

Two SEE framework standards, the Portable Common Tool Environment (PCTE) and A Tools Integration Standard (ATIS), will continue to be important and will evolve towards a more complete standard, possibly merging. The Common Ada Programming Support Environment (APSE) Interface Set (CAIS-A) standard will be superseded by a newer, more inclusive standard incorporating work from other standards, possibly adopting the descendant of the PCTE and ATIS. The Portable Common Interface Set (PCIS) activity is tasked with establishing a more inclusive standard incorporating earlier standards work; the current direction of PCIS activity is to define new layers of SEE services on top of the PCTE in which the ATIS will be a major influence. As a result, PCIS may effect the eventual replacement of the PCTE and ATIS (and possibly other standards).

The commercial market influences SEE standards; consequently, the DoD is faced with the dilemma of continuing to emphasize its own standards or adopting more products based on commercial standards. Commercial products provide earlier access to advances in SEE technology and provide interoperability with a greater variety of other products. Limiting the DoD's use of SEE products to those that comply with its standards may actually hamper its goal of flexibility through software interoperability. The DoD policy on commercial-off-the-shelf (COTS) software will probably lead to its adoption of more commercial standards in the future [DRUYUN 93].

(This page is intentionally blank.)

4
State of SEE Technology

In this section are observations concerning the current state of SEE technology and anticipated future directions.

4.1
Summary of State-of-the-Practice

SEEs can be very complex; consequently, SEE frameworks and integrated tools can take a long time to develop. The field is still young, and perceptions of what are appropriate products are growing and changing. Several commercial SEEs have been around for a few years and have been extensively tested by use on multiple projects. SEEs that are available and have some expectation of long-term support vary widely in the features they address and how the features are implemented. In short, SEE technology is still showing some immaturity, but is continuing to evolve.

New SEE framework products, integrated tools and toolsets are continuing to appear on the market. Many have distinctly new approaches; some are implementations of current standards, and some are expansions of CASE tools now addressing the broader application of a SEE. Products and tools that are appearing in the market come from companies with established reputations in Software Engineering technology, from startup companies specializing in SEE technology and from alliances of both kinds of companies. Note that there is still a degree of volatility in the current SEE marketplace; some companies that were believed to be "established" in the marketplace have faced cutbacks in sales, staff and commitments, and may be in danger of going out of business.

Major players for currently available, viable SEE technology products are:

SYMBOL 167 \f "Wingdings" \s 10 \h
Atherton Technology

SYMBOL 167 \f "Wingdings" \s 10 \h
Cadre Technologies Inc.

SYMBOL 167 \f "Wingdings" \s 10 \h
Cap Gemini

SYMBOL 167 \f "Wingdings" \s 10 \h
Computer Resources International A/S

SYMBOL 167 \f "Wingdings" \s 10 \h
Digital Equipment Corporation

SYMBOL 167 \f "Wingdings" \s 10 \h
Electronic Data Systems Corporation

SYMBOL 167 \f "Wingdings" \s 10 \h
GIE Emeraude

SYMBOL 167 \f "Wingdings" \s 10 \h
Hewlett-Packard Company

SYMBOL 167 \f "Wingdings" \s 10 \h
IBM Corporation

SYMBOL 167 \f "Wingdings" \s 10 \h
Interactive Development Environments

SYMBOL 167 \f "Wingdings" \s 10 \h
Logicon

SYMBOL 167 \f "Wingdings" \s 10 \h
Microsoft Corporation

SYMBOL 167 \f "Wingdings" \s 10 \h
Rational

SYMBOL 167 \f "Wingdings" \s 10 \h
Société Française de Génie Logiciel

SYMBOL 167 \f "Wingdings" \s 10 \h
Softlab Inc.

SYMBOL 167 \f "Wingdings" \s 10 \h
Sun Microsystems/SunSoft

SYMBOL 167 \f "Wingdings" \s 10 \h
Texas Instruments.

4.2
Summary of the State-of-the-Art

The need to standardize SEE framework interfaces has been recognized with the development of standards like the Portable Common Tool Environment (PCTE); the Common Ada Programming Support Environment (APSE) Interface Set, Revision A (CAIS-A); and the Common Object Request Broker Architecture (CORBA). However, these standards do not go far enough towards developing SEEs. PCTE and CAIS-A are focused to a large extent on a common data repository (repository-centered) as the means to integrate tools into a consistent SEE framework, whereas SEEs based on CORBA are messaging-centered. Issues that must be addressed (since they are issues that address the viability of the SEE) are communication among SEE components, support for defined life cycle development processes, user interface concerns, and administration of the SEE framework. There is no industry-wide consensus on these issues.

4.3
Government Initiatives

The Federal government has taken an active role in promoting the development of SEE technology. The agencies that have been the most active are the DoD and NIST. Government activities have taken the form of funding organizations to study, evaluate, and facilitate SEE technology, including the funding of the direct development of SEE technology. A partial list of government activities is given here.

4.3.1
The Process-Oriented Software Life Cycle Support Environment (ProSLCSE)

The ProSLCSE is based on the Air Force's Rome Laboratory's Software Life Cycle Support Environment (SLCSE) and is currently being developed by International Software Systems, Inc. It is intended to be a total life cycle SEE that supports DoD Standard 2167A [ISSI 93].

4.3.2
Software Technology for Adaptable Reliable Systems (STARS) Program

STARS is a program of the Advanced Research Projects Agency (ARPA). One of the goals of the STARS program is to promote and facilitate megaprogramming. Megaprogramming is an approach to modular software development and support that emphasizes the reuse of large segments of software. The STARS program works with the Software Engineering Institute (SEI), the Corporate Information Management (CIM) Program, standards organizations, and other groups to evolve open architecture standards and practices to support megaprogramming. The program also works with the vendor community to demonstrate the viability of adaptable, commercially available SEEs. Three prime contractors (Boeing, Unisys, and IBM) are currently funded by the STARS program to demonstrate SEEs that support megaprogramming. Operational SEEs leading to commercial products are planned for 1994 or 1995.

4.3.3
Integrated Computer-Aided Software Engineering (I-CASE)

I-CASE is an effort by the Air Force, on behalf of the DoD, to develop a CASE environment and tools to support administrative software development. The effort includes an open, integrated CASE repository, software tools, run-time software components, and user support services. Twenty or more pilot projects at almost as many sites are scheduled to last up to one year and will test the tools and environment at different stages of the software development life cycle. Initial contract award was made in November 1993, but the contractor was subsequently disqualified. The new contractor selection was announced at the 1994 Software Technology Conference.

4.3.4
The Software Technology Support Center (STSC)

The goals and objectives of the STSC focus on the collection and dissemination within the Air Force of useful information on the role of technology in improving software development and support. This information includes identification and evaluation of products and methodologies and guidance on how to put the technology into practice. The STSC reaches audiences across the entire DoD community through its publications, such as CrossTalk and technology reports, and through its annual Software Technology Conference.

4.3.5
The Integrated SEE Special Interest Group (ISEE SIG)

The ISEE SIG was created under the umbrella of the NIST's Open Systems Environment Implementors' Workshop (OIW) and was tasked to identify and pull together combinations of standards that can be used to build SEEs. These combinations are referred to as profiles. The ISEE SIG replaces the former NIST ISEE Working Group, which was dissolved in 1993.

4.3.6
The Software Engineering Institute (SEI)

The SEI is chartered to:

SYMBOL 167 \f "Wingdings" \s 10 \h
accelerate to common practice, modern software engineering methods, techniques and practices;

SYMBOL 167 \f "Wingdings" \s 10 \h
facilitate the adoption and institutionalization of software engineering technology within the DoD community;

SYMBOL 167 \f "Wingdings" \s 10 \h
define goals of excellence for the practice of software engineering.

The SEI's primary goal is the transfer of technology. The SEI provides inputs into the STARS program and to NIST as well as pursuing studies in SEE technology.

4.3.7
The Project Support Environment Standards Working Group (PSESWG)

The funding for the Navy's Next Generation Computer Resources (NGCR) PSESWG (pronounced "peace-wig") effort ended in FY93. The objective of the PSESWG was to select a collection of standards for interfaces to be used in the acquisition of Project Support Environments (PSEs), specifically PSEs that would support the development of mission critical computer resources (MCCR) software. The resulting military standard was to be usable in the procurement of Navy software systems in 1998. Much of the work of the PSESWG has been picked by the SEI and NIST.
4.3.8
Corporate Information Management (CIM) Program

CIM is a DoD program managed by the Defense Information Systems Agency (DISA). The goal of the program is to apply Information Resource Management (IRM) principles across the entire DoD community. Objectives of the program are:

SYMBOL 167 \f "Wingdings" \s 10 \h
elimination of redundant DoD systems

SYMBOL 167 \f "Wingdings" \s 10 \h
reduction of maintenance costs by streamling systems

SYMBOL 167 \f "Wingdings" \s 10 \h
establishment of a solid foundation for efficient development of new, effective corporate information systems at reduced costs.

4.4
Future Directions and Trends

Major improvements in SEE technology will require time to address and resolve issues such as the following:

SYMBOL 167 \f "Wingdings" \s 10 \h
Vendors are recognizing that they alone cannot supply a full set of software development tools for the entire software life cycle; the cost of developing and maintaining the tools is too high. This problem has led to the formation of vendor groups that are formed to supply the full set of tools. The future may see a few large vendors becoming sole sources for the full set.

SYMBOL 167 \f "Wingdings" \s 10 \h
Standards bodies may be taking too much time to reach consensus and closure on standards; SEE builders, rather than waiting, are creating de facto standards. Standards bodies need to be willing to drop obsolete standards in favor of de facto standards when the de facto standards are clearly superior.

SYMBOL 167 \f "Wingdings" \s 10 \h
Programs such as the NIST ISEE SIG require time to further their work in creating profiles of standards.

SYMBOL 167 \f "Wingdings" \s 10 \h
Communication between academia, vendors, and users must be promoted so that important user needs are correctly perceived and implemented.

Areas that have been insufficiently addressed up to now by SEE technology and from which improvements are to be expected are:

SYMBOL 167 \f "Wingdings" \s 10 \h
software development process modeling

SYMBOL 167 \f "Wingdings" \s 10 \h
software development process definition and capture

SYMBOL 167 \f "Wingdings" \s 10 \h
software development process enactment and enforcement

SYMBOL 167 \f "Wingdings" \s 10 \h
reuse of existing software and software project artifacts

SYMBOL 167 \f "Wingdings" \s 10 \h
on-going support for existing software (legacy software)

SYMBOL 167 \f "Wingdings" \s 10 \h
human skills and training

SYMBOL 167 \f "Wingdings" \s 10 \h
security.

4.4.1
Software development process

Future SEE technology will include increased emphasis on modeling the software development process—allowing for more detailed definitions of the user roles, tasks, and rules that define the organization's required process. It follows that future SEE technology will include increased emphasis on process enactment.

4.4.2
Reuse

Support for reuse will involve storing representations of work products from all the software life cycle phases. There is also potential for great improvements in reuse through support for the analysis of application domains with a view toward reuse.

4.4.3
Security

Future SEE technology will have more support for security features, which will reside within the SEE framework. Security features will support traditional security requirements, such as access and permissions, while support for multilevel security will mature from the efforts of the DoD and National Security Agency.

5
Applications

This section addresses the use of SEE technology in an organization—why, when, and how. Technical hints and acquisition are also covered in this section.

5.1
Why Do You Use SEE Technology?

An organization adopts SEE technology to improve its software quality and software development productivity. The improvements are achieved by automating many of the labor-intensive and often trivial tasks of software development, by reducing the generation of human errors in the software development process, and by reusing the work of others. The need for SEE technology increases with growth in the size of the software development teams and in the complexity of the software.

Adoption of SEE technology can provide some or all of the following capabilities:

SYMBOL 167 \f "Wingdings" \s 10 \h
Assistance in defining the software process

SYMBOL 167 \f "Wingdings" \s 10 \h
Support for widespread and consistent use of process automation

SYMBOL 167 \f "Wingdings" \s 10 \h
Support for a well-defined software process

SYMBOL 167 \f "Wingdings" \s 10 \h
Data sharing among tools

SYMBOL 167 \f "Wingdings" \s 10 \h
Intertool messaging

SYMBOL 167 \f "Wingdings" \s 10 \h
Common user interface to multiple (CASE) tools

SYMBOL 167 \f "Wingdings" \s 10 \h
Integrated life cycle processes, e.g., configuration management

SYMBOL 167 \f "Wingdings" \s 10 \h
Improved and consistent group coordination and communication

SYMBOL 167 \f "Wingdings" \s 10 \h
Automated collection of metrics.

5.2
When Do You Use SEE Technology?

The selection and implementation of a particular SEE technology presuppose a commitment to a software development methodology, or methodologies. The software development methodology emerges from an organization's implementation of a defined software development process [FOWLER 90]. With the establishment of a defined and managed process, the software professionals in the organization are better able to evaluate, select, and adopt a SEE [HUMPHREY 90].

How does an organization determine if it is ready to use SEE technology? A SEE will be of particular interest to an organization that has adopted advanced methods for the design, management, and maintenance of large or complex software projects. Acquiring a SEE should not be viewed as a solution to out-of-control software development, but rather as an aid to achieving a well-defined process for managing software development in the organization. The following list, though not intended to be comprehensive, provides some essential attributes of an organization implementing a SEE:

SYMBOL 167 \f "Wingdings" \s 10 \h
Experience in the use of CASE tools

SYMBOL 167 \f "Wingdings" \s 10 \h
Funding allocated for equipment, software, training, and the additional roles required for managing and supporting the SEE

SYMBOL 167 \f "Wingdings" \s 10 \h
High degree of receptiveness to change

SYMBOL 167 \f "Wingdings" \s 10 \h
Opportunities for widespread use of the services provided by the SEE

SYMBOL 167 \f "Wingdings" \s 10 \h
Management commitment to provide people and money resources

SYMBOL 167 \f "Wingdings" \s 10 \h
People within the organization with expertise in serving as champions of change

SYMBOL 167 \f "Wingdings" \s 10 \h
Little or no schedule constraint for an initial project.

The purpose of a SEE is to support and improve Software Engineering within an organization. Improvement is measured in terms of the reduction in effort and total life cycle cost to produce, support, and maintain a software application. In particular, the purpose of the SEE is to automate those aspects of Software Engineering that can improve the quality of the software being produced and raise the productivity of the software developers.

5.3
How Do You Use SEE Technology?

Reaping the most benefits from SEE technology comes from a well-planned implementation strategy and careful selection of the SEE. The insertion of SEE technology starts with having a defined process in place, understanding the process, and then developing plans and goals to improve the process supported by SEE technology. IEEE Std 109-1992: IEEE Recommended Practice for the Evaluation and Selection of CASE Tools offers guidelines and recommended practices that are adaptable to the selection of a SEE.

5.4
Important Issues

SEE products vary considerably in how they can be adapted to the requirements of specific projects and organizations. Selection of a SEE product should be based on how it can accommodate the particular approach an organization uses to develop software.

Often an organization has one core process model that can be tailored or customized for all the projects that the organization is likely to handle. It may need to be tailored to the process for innovative research on new software products, or for maintenance of existing products, or for production of well-defined, mainstream products. The process may even need to be different for applications with special features such as real-time control, database-intensive programs, or high-resolution graphics.

A SEE product should be selected to match the generic process model, but also to have the flexibility to customize to specific projects. Customization should allow for variations in programming languages, design methodologies, documentation standards, and in software development life cycle models (rapid prototyping, waterfall, spiral, etc.). Although some SEE products are oriented to a specific process, design methodology, documentation standard, or programming language, most are flexible enough to adapt to the needs of different projects.

In the future, many SEEs will support a software life cycle process model precisely defined by the user (within some constraints). The SEE will also help the user to evolve and optimize that process and to manage the impacts inherent in change. A major challenge will be in balancing the control necessary for a stable environment against the flexibility necessary for adapting and improving the process.

5.5
Management and Business Matters

Adoption of SEE technology may expose an organization to risks in many areas:

SYMBOL 167 \f "Wingdings" \s 10 \h
The user may expect too much from the technology without sufficient focus on developing strong software engineering and management skills.

SYMBOL 167 \f "Wingdings" \s 10 \h
Due to the large investment usually required for SEE technology, the return on investment is low (if not negative) until software process is well-defined.

SYMBOL 167 \f "Wingdings" \s 10 \h
The return on investment is also affected by the training time and the time needed to understand how best to use the product.

SYMBOL 167 \f "Wingdings" \s 10 \h
With SEE technology being relatively new and evolving, a strong decision to commit to today's technology must be weighed against trends and tomorrow's needs.

SYMBOL 167 \f "Wingdings" \s 10 \h
There is a high probability of underestimating the required resources to manage and support the SEE.

Maturity in technology adoption comes in stages: from trying it out on a first project, moving on to official acceptance and enforcement resulting in integration into the "corporate culture." SEEs will be most successful where individuals are trained and experienced in effective Software Engineering principles and where the organization has developed a culture of commitment to software quality.

5.6
Technical Hints

Once an organization has determined that it is ready for a SEE, the key to selecting the right SEE products is matching them to the software development needs of the organization. There is no "best" product to suit everyone's needs, nor to suit even the needs of all Air Force organizations. However, there may be a best SEE product for a given organization's software development process. In the following paragraphs are some questions to seriously consider.

5.6.1
Organizational needs

The primary step in selecting a SEE is to determine the organization's needs. The following questions give a flavor of what should be asked of the organization:

(1)
If the organization supports more than one software development process model, what are the specific support needs for each model?

(2)
What constraints are placed on the organization needs, e.g., integration of CASE tools already in use, specific platform requirements, specific network requirements?

(3)
What are the organization's specific needs with respect to integration, support for software life cycle phases, customization, compliance to standards, specialization?

(4)
What are the organizational needs to effectively develop and maintain software?

(5)
What are the resources the organization can realistically apply to software projects?

(6)
What size of projects does the organization intend to support?

(7)
Does the organization require evolutionary implementation of SEE technology (starting with a small set of capabilities and growing incrementally)?

(8)
What are the training needs?

5.6.2
Product requirements

The following questions give a flavor of determining the organization's requirements for the SEE product:

(1)
Has the SEE product supported projects of comparable size to the organization's needs?

(2)
Does the product's history indicate that it is sound and mature?

(3)
Has the product been applied in a similar application domain?

(4)
Are evaluations of the product available?

(5)
What are the recommended training requirements?

(6)
Is the customer given full rights and access to source code, and if so, at what price?

(7)
How frequent are releases of the product?

(8)
What consideration is given to maintaining upward compatibility from one release of the product to another?

(9)
What are the total maintenance costs and does the maintenance agreement include future releases of the product?

(10)
Does a user group exist for discussing problems, enhancements, etc.?

(11)
Does the product fit with other products that are being considered?

5.6.3
Vendor evaluation

The following questions give a flavor of evaluating the vendor of the SEE product:

(1)
Will the vendor provide an evaluation copy of the SEE product for a specified period of time?

(2)
Will the vendor support the organization's evolutionary implementation of SEE technology (starting with a small set of capabilities and growing incrementally), if that is the organization's strategy?

(3)
Is there a vendor staff dedicated to user support?

(4)
Does the vendor live up to commitments and promises?

(5)
Are future projections for the vendor positive and stable?

(6)
Does the vendor provide a responsive, helpful hot-line service?

(7)
Does the vendor provide installation and consultation support?

5.7
Acquisition of a SEE

It is recommended that SEE products be selected with the help of qualified technical advisors who have current information and experience in SEE technology. One of the main roles of the STSC is to help organizations identify and acquire appropriate, advanced software technology.

6
SEE Technology Products

This section discusses the process used by the STSC SEE domain team to gather information on available SEE technology products. The specific information that was gathered is contained in the appendices of this report.

6.1
Scope

The SEE technology products that appear in this report were selected as being identified as a SEE framework or a populated SEE framework. A SEE framework is a procurable product that facilitates and supports tools integration and interoperability and data sharing by a repository. A populated SEE framework is a SEE framework that has integrated into it end-user tools that support one or more phases of the software life cycle.

6.2
The Information Gathering Process

The information gathering process used for this report consisted of the following steps:

(1)
Survey the SEE technology products market.

(2)
Identify the products that meet the criteria outlined in paragraph 6.1.

(3)
Obtain complete descriptions of the products from the vendors through use of a STSC questionnaire and by interview, if possible.

(4)
Identify users of the selected products.

(5)
Obtain product critiques from the users through use of a STSC survey sheet and by follow-on interviews, wherever possible.

6.3
Product Lists

A list of the selected SEE technology products, sorted by source (vendor), appears in Appendix C.

6.4
Product Sheets/Vendor Questionnaires

Vendor questionnaires were sent to each of the vendors on the product list. The returned questionnaires were summarized onto product sheets and the features matrix. The product sheets appear in Appendix D and the features matrix in Appendix F.

6.5
Product Critiques

The users' experiences with the selected SEE technology products were captured on product critique forms, which had been sent to the users. On the form, the user was asked not only about experience with the product but also about software experience in general. Even though the users' names were provided by the vendors, the product critiques were returned directly to the STSC. Critiques were not returned on every product. The completed critique forms are in Appendix E.

6.6
Criteria

The need for adequate criteria to evaluate SEE technology products became apparent during the information gathering process. The STSC decided to take an active role within the DoD to work at improving criteria for SEE technology product evaluations. To do so, the STSC established the informal DoD SEE Criteria Working Group (SEECRIT WG), which has started pulling together criteria from interested agencies within the Federal government. Going beyond information gathering, the goal of the SEECRIT WG is to provide adequate criteria for the use of organizations that are acquiring SEE technology.

7
Conclusions

SEE technology can be a major building block in the software development improvement process. By introducing automated software engineering into software development and post-development support, long-term improvements in productivity and quality can be expected, although significant costs should be expected in the short-term.

SEE technology is not a "silver bullet"—it is not a replacement for a good software development team nor for a well-defined software development and support process. In an organizational culture that is structured, managed, and understands its processes, a SEE can enhance productivity and quality. Insertion of SEE technology should be a facet of a multifaceted approach to software development and support improvement.

(This page is intentionally blank.)

� STSC mission statement, 8 December 1993

